Metamath Proof Explorer


Theorem pmapat

Description: The projective map of an atom. (Contributed by NM, 25-Jan-2012)

Ref Expression
Hypotheses pmapat.a 𝐴 = ( Atoms ‘ 𝐾 )
pmapat.m 𝑀 = ( pmap ‘ 𝐾 )
Assertion pmapat ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ) → ( 𝑀𝑃 ) = { 𝑃 } )

Proof

Step Hyp Ref Expression
1 pmapat.a 𝐴 = ( Atoms ‘ 𝐾 )
2 pmapat.m 𝑀 = ( pmap ‘ 𝐾 )
3 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
4 3 1 atbase ( 𝑃𝐴𝑃 ∈ ( Base ‘ 𝐾 ) )
5 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
6 3 5 1 2 pmapval ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑀𝑃 ) = { 𝑞𝐴𝑞 ( le ‘ 𝐾 ) 𝑃 } )
7 4 6 sylan2 ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ) → ( 𝑀𝑃 ) = { 𝑞𝐴𝑞 ( le ‘ 𝐾 ) 𝑃 } )
8 hlatl ( 𝐾 ∈ HL → 𝐾 ∈ AtLat )
9 8 ad2antrr ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ) ∧ 𝑞𝐴 ) → 𝐾 ∈ AtLat )
10 simpr ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ) ∧ 𝑞𝐴 ) → 𝑞𝐴 )
11 simplr ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ) ∧ 𝑞𝐴 ) → 𝑃𝐴 )
12 5 1 atcmp ( ( 𝐾 ∈ AtLat ∧ 𝑞𝐴𝑃𝐴 ) → ( 𝑞 ( le ‘ 𝐾 ) 𝑃𝑞 = 𝑃 ) )
13 9 10 11 12 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ) ∧ 𝑞𝐴 ) → ( 𝑞 ( le ‘ 𝐾 ) 𝑃𝑞 = 𝑃 ) )
14 13 rabbidva ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ) → { 𝑞𝐴𝑞 ( le ‘ 𝐾 ) 𝑃 } = { 𝑞𝐴𝑞 = 𝑃 } )
15 rabsn ( 𝑃𝐴 → { 𝑞𝐴𝑞 = 𝑃 } = { 𝑃 } )
16 15 adantl ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ) → { 𝑞𝐴𝑞 = 𝑃 } = { 𝑃 } )
17 7 14 16 3eqtrd ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ) → ( 𝑀𝑃 ) = { 𝑃 } )