Step |
Hyp |
Ref |
Expression |
1 |
|
pmapat.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
pmapat.m |
⊢ 𝑀 = ( pmap ‘ 𝐾 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
4 |
3 1
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
5 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
6 |
3 5 1 2
|
pmapval |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑀 ‘ 𝑃 ) = { 𝑞 ∈ 𝐴 ∣ 𝑞 ( le ‘ 𝐾 ) 𝑃 } ) |
7 |
4 6
|
sylan2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) → ( 𝑀 ‘ 𝑃 ) = { 𝑞 ∈ 𝐴 ∣ 𝑞 ( le ‘ 𝐾 ) 𝑃 } ) |
8 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
9 |
8
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑞 ∈ 𝐴 ) → 𝐾 ∈ AtLat ) |
10 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑞 ∈ 𝐴 ) → 𝑞 ∈ 𝐴 ) |
11 |
|
simplr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑞 ∈ 𝐴 ) → 𝑃 ∈ 𝐴 ) |
12 |
5 1
|
atcmp |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑞 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑞 ( le ‘ 𝐾 ) 𝑃 ↔ 𝑞 = 𝑃 ) ) |
13 |
9 10 11 12
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑞 ∈ 𝐴 ) → ( 𝑞 ( le ‘ 𝐾 ) 𝑃 ↔ 𝑞 = 𝑃 ) ) |
14 |
13
|
rabbidva |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) → { 𝑞 ∈ 𝐴 ∣ 𝑞 ( le ‘ 𝐾 ) 𝑃 } = { 𝑞 ∈ 𝐴 ∣ 𝑞 = 𝑃 } ) |
15 |
|
rabsn |
⊢ ( 𝑃 ∈ 𝐴 → { 𝑞 ∈ 𝐴 ∣ 𝑞 = 𝑃 } = { 𝑃 } ) |
16 |
15
|
adantl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) → { 𝑞 ∈ 𝐴 ∣ 𝑞 = 𝑃 } = { 𝑃 } ) |
17 |
7 14 16
|
3eqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) → ( 𝑀 ‘ 𝑃 ) = { 𝑃 } ) |