Metamath Proof Explorer


Theorem pmapeq0

Description: A projective map value is zero iff its argument is lattice zero. (Contributed by NM, 27-Jan-2012)

Ref Expression
Hypotheses pmapeq0.b 𝐵 = ( Base ‘ 𝐾 )
pmapeq0.z 0 = ( 0. ‘ 𝐾 )
pmapeq0.m 𝑀 = ( pmap ‘ 𝐾 )
Assertion pmapeq0 ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( ( 𝑀𝑋 ) = ∅ ↔ 𝑋 = 0 ) )

Proof

Step Hyp Ref Expression
1 pmapeq0.b 𝐵 = ( Base ‘ 𝐾 )
2 pmapeq0.z 0 = ( 0. ‘ 𝐾 )
3 pmapeq0.m 𝑀 = ( pmap ‘ 𝐾 )
4 hlatl ( 𝐾 ∈ HL → 𝐾 ∈ AtLat )
5 4 adantr ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → 𝐾 ∈ AtLat )
6 2 3 pmap0 ( 𝐾 ∈ AtLat → ( 𝑀0 ) = ∅ )
7 5 6 syl ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( 𝑀0 ) = ∅ )
8 7 eqeq2d ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( ( 𝑀𝑋 ) = ( 𝑀0 ) ↔ ( 𝑀𝑋 ) = ∅ ) )
9 hlop ( 𝐾 ∈ HL → 𝐾 ∈ OP )
10 9 adantr ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → 𝐾 ∈ OP )
11 1 2 op0cl ( 𝐾 ∈ OP → 0𝐵 )
12 10 11 syl ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → 0𝐵 )
13 1 3 pmap11 ( ( 𝐾 ∈ HL ∧ 𝑋𝐵0𝐵 ) → ( ( 𝑀𝑋 ) = ( 𝑀0 ) ↔ 𝑋 = 0 ) )
14 12 13 mpd3an3 ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( ( 𝑀𝑋 ) = ( 𝑀0 ) ↔ 𝑋 = 0 ) )
15 8 14 bitr3d ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( ( 𝑀𝑋 ) = ∅ ↔ 𝑋 = 0 ) )