Step |
Hyp |
Ref |
Expression |
1 |
|
pmapeq0.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
pmapeq0.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
3 |
|
pmapeq0.m |
⊢ 𝑀 = ( pmap ‘ 𝐾 ) |
4 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
5 |
4
|
adantr |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ AtLat ) |
6 |
2 3
|
pmap0 |
⊢ ( 𝐾 ∈ AtLat → ( 𝑀 ‘ 0 ) = ∅ ) |
7 |
5 6
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 0 ) = ∅ ) |
8 |
7
|
eqeq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑋 ) = ( 𝑀 ‘ 0 ) ↔ ( 𝑀 ‘ 𝑋 ) = ∅ ) ) |
9 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
10 |
9
|
adantr |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ OP ) |
11 |
1 2
|
op0cl |
⊢ ( 𝐾 ∈ OP → 0 ∈ 𝐵 ) |
12 |
10 11
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → 0 ∈ 𝐵 ) |
13 |
1 3
|
pmap11 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑋 ) = ( 𝑀 ‘ 0 ) ↔ 𝑋 = 0 ) ) |
14 |
12 13
|
mpd3an3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑋 ) = ( 𝑀 ‘ 0 ) ↔ 𝑋 = 0 ) ) |
15 |
8 14
|
bitr3d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑋 ) = ∅ ↔ 𝑋 = 0 ) ) |