Metamath Proof Explorer


Theorem pmapglb2N

Description: The projective map of the GLB of a set of lattice elements S . Variant of Theorem 15.5.2 of MaedaMaeda p. 62. Allows S = (/) . (Contributed by NM, 21-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses pmapglb2.b 𝐵 = ( Base ‘ 𝐾 )
pmapglb2.g 𝐺 = ( glb ‘ 𝐾 )
pmapglb2.a 𝐴 = ( Atoms ‘ 𝐾 )
pmapglb2.m 𝑀 = ( pmap ‘ 𝐾 )
Assertion pmapglb2N ( ( 𝐾 ∈ HL ∧ 𝑆𝐵 ) → ( 𝑀 ‘ ( 𝐺𝑆 ) ) = ( 𝐴 𝑥𝑆 ( 𝑀𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 pmapglb2.b 𝐵 = ( Base ‘ 𝐾 )
2 pmapglb2.g 𝐺 = ( glb ‘ 𝐾 )
3 pmapglb2.a 𝐴 = ( Atoms ‘ 𝐾 )
4 pmapglb2.m 𝑀 = ( pmap ‘ 𝐾 )
5 hlop ( 𝐾 ∈ HL → 𝐾 ∈ OP )
6 eqid ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 )
7 2 6 glb0N ( 𝐾 ∈ OP → ( 𝐺 ‘ ∅ ) = ( 1. ‘ 𝐾 ) )
8 7 fveq2d ( 𝐾 ∈ OP → ( 𝑀 ‘ ( 𝐺 ‘ ∅ ) ) = ( 𝑀 ‘ ( 1. ‘ 𝐾 ) ) )
9 6 3 4 pmap1N ( 𝐾 ∈ OP → ( 𝑀 ‘ ( 1. ‘ 𝐾 ) ) = 𝐴 )
10 8 9 eqtrd ( 𝐾 ∈ OP → ( 𝑀 ‘ ( 𝐺 ‘ ∅ ) ) = 𝐴 )
11 5 10 syl ( 𝐾 ∈ HL → ( 𝑀 ‘ ( 𝐺 ‘ ∅ ) ) = 𝐴 )
12 2fveq3 ( 𝑆 = ∅ → ( 𝑀 ‘ ( 𝐺𝑆 ) ) = ( 𝑀 ‘ ( 𝐺 ‘ ∅ ) ) )
13 riin0 ( 𝑆 = ∅ → ( 𝐴 𝑥𝑆 ( 𝑀𝑥 ) ) = 𝐴 )
14 12 13 eqeq12d ( 𝑆 = ∅ → ( ( 𝑀 ‘ ( 𝐺𝑆 ) ) = ( 𝐴 𝑥𝑆 ( 𝑀𝑥 ) ) ↔ ( 𝑀 ‘ ( 𝐺 ‘ ∅ ) ) = 𝐴 ) )
15 11 14 syl5ibrcom ( 𝐾 ∈ HL → ( 𝑆 = ∅ → ( 𝑀 ‘ ( 𝐺𝑆 ) ) = ( 𝐴 𝑥𝑆 ( 𝑀𝑥 ) ) ) )
16 15 adantr ( ( 𝐾 ∈ HL ∧ 𝑆𝐵 ) → ( 𝑆 = ∅ → ( 𝑀 ‘ ( 𝐺𝑆 ) ) = ( 𝐴 𝑥𝑆 ( 𝑀𝑥 ) ) ) )
17 1 2 4 pmapglb ( ( 𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺𝑆 ) ) = 𝑥𝑆 ( 𝑀𝑥 ) )
18 simpr ( ( ( 𝐾 ∈ HL ∧ 𝑆𝐵 ) ∧ 𝑥𝑆 ) → 𝑥𝑆 )
19 simpll ( ( ( 𝐾 ∈ HL ∧ 𝑆𝐵 ) ∧ 𝑥𝑆 ) → 𝐾 ∈ HL )
20 ssel2 ( ( 𝑆𝐵𝑥𝑆 ) → 𝑥𝐵 )
21 20 adantll ( ( ( 𝐾 ∈ HL ∧ 𝑆𝐵 ) ∧ 𝑥𝑆 ) → 𝑥𝐵 )
22 1 3 4 pmapssat ( ( 𝐾 ∈ HL ∧ 𝑥𝐵 ) → ( 𝑀𝑥 ) ⊆ 𝐴 )
23 19 21 22 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑆𝐵 ) ∧ 𝑥𝑆 ) → ( 𝑀𝑥 ) ⊆ 𝐴 )
24 18 23 jca ( ( ( 𝐾 ∈ HL ∧ 𝑆𝐵 ) ∧ 𝑥𝑆 ) → ( 𝑥𝑆 ∧ ( 𝑀𝑥 ) ⊆ 𝐴 ) )
25 24 ex ( ( 𝐾 ∈ HL ∧ 𝑆𝐵 ) → ( 𝑥𝑆 → ( 𝑥𝑆 ∧ ( 𝑀𝑥 ) ⊆ 𝐴 ) ) )
26 25 eximdv ( ( 𝐾 ∈ HL ∧ 𝑆𝐵 ) → ( ∃ 𝑥 𝑥𝑆 → ∃ 𝑥 ( 𝑥𝑆 ∧ ( 𝑀𝑥 ) ⊆ 𝐴 ) ) )
27 n0 ( 𝑆 ≠ ∅ ↔ ∃ 𝑥 𝑥𝑆 )
28 df-rex ( ∃ 𝑥𝑆 ( 𝑀𝑥 ) ⊆ 𝐴 ↔ ∃ 𝑥 ( 𝑥𝑆 ∧ ( 𝑀𝑥 ) ⊆ 𝐴 ) )
29 26 27 28 3imtr4g ( ( 𝐾 ∈ HL ∧ 𝑆𝐵 ) → ( 𝑆 ≠ ∅ → ∃ 𝑥𝑆 ( 𝑀𝑥 ) ⊆ 𝐴 ) )
30 29 3impia ( ( 𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅ ) → ∃ 𝑥𝑆 ( 𝑀𝑥 ) ⊆ 𝐴 )
31 iinss ( ∃ 𝑥𝑆 ( 𝑀𝑥 ) ⊆ 𝐴 𝑥𝑆 ( 𝑀𝑥 ) ⊆ 𝐴 )
32 30 31 syl ( ( 𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅ ) → 𝑥𝑆 ( 𝑀𝑥 ) ⊆ 𝐴 )
33 sseqin2 ( 𝑥𝑆 ( 𝑀𝑥 ) ⊆ 𝐴 ↔ ( 𝐴 𝑥𝑆 ( 𝑀𝑥 ) ) = 𝑥𝑆 ( 𝑀𝑥 ) )
34 32 33 sylib ( ( 𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅ ) → ( 𝐴 𝑥𝑆 ( 𝑀𝑥 ) ) = 𝑥𝑆 ( 𝑀𝑥 ) )
35 17 34 eqtr4d ( ( 𝐾 ∈ HL ∧ 𝑆𝐵𝑆 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺𝑆 ) ) = ( 𝐴 𝑥𝑆 ( 𝑀𝑥 ) ) )
36 35 3expia ( ( 𝐾 ∈ HL ∧ 𝑆𝐵 ) → ( 𝑆 ≠ ∅ → ( 𝑀 ‘ ( 𝐺𝑆 ) ) = ( 𝐴 𝑥𝑆 ( 𝑀𝑥 ) ) ) )
37 16 36 pm2.61dne ( ( 𝐾 ∈ HL ∧ 𝑆𝐵 ) → ( 𝑀 ‘ ( 𝐺𝑆 ) ) = ( 𝐴 𝑥𝑆 ( 𝑀𝑥 ) ) )