Step |
Hyp |
Ref |
Expression |
1 |
|
pmapglb2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
pmapglb2.g |
⊢ 𝐺 = ( glb ‘ 𝐾 ) |
3 |
|
pmapglb2.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
pmapglb2.m |
⊢ 𝑀 = ( pmap ‘ 𝐾 ) |
5 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
6 |
|
eqid |
⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) |
7 |
2 6
|
glb0N |
⊢ ( 𝐾 ∈ OP → ( 𝐺 ‘ ∅ ) = ( 1. ‘ 𝐾 ) ) |
8 |
7
|
fveq2d |
⊢ ( 𝐾 ∈ OP → ( 𝑀 ‘ ( 𝐺 ‘ ∅ ) ) = ( 𝑀 ‘ ( 1. ‘ 𝐾 ) ) ) |
9 |
6 3 4
|
pmap1N |
⊢ ( 𝐾 ∈ OP → ( 𝑀 ‘ ( 1. ‘ 𝐾 ) ) = 𝐴 ) |
10 |
8 9
|
eqtrd |
⊢ ( 𝐾 ∈ OP → ( 𝑀 ‘ ( 𝐺 ‘ ∅ ) ) = 𝐴 ) |
11 |
5 10
|
syl |
⊢ ( 𝐾 ∈ HL → ( 𝑀 ‘ ( 𝐺 ‘ ∅ ) ) = 𝐴 ) |
12 |
|
rexeq |
⊢ ( 𝐼 = ∅ → ( ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 ↔ ∃ 𝑖 ∈ ∅ 𝑦 = 𝑆 ) ) |
13 |
12
|
abbidv |
⊢ ( 𝐼 = ∅ → { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } = { 𝑦 ∣ ∃ 𝑖 ∈ ∅ 𝑦 = 𝑆 } ) |
14 |
|
rex0 |
⊢ ¬ ∃ 𝑖 ∈ ∅ 𝑦 = 𝑆 |
15 |
14
|
abf |
⊢ { 𝑦 ∣ ∃ 𝑖 ∈ ∅ 𝑦 = 𝑆 } = ∅ |
16 |
13 15
|
eqtrdi |
⊢ ( 𝐼 = ∅ → { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } = ∅ ) |
17 |
16
|
fveq2d |
⊢ ( 𝐼 = ∅ → ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) = ( 𝐺 ‘ ∅ ) ) |
18 |
17
|
fveq2d |
⊢ ( 𝐼 = ∅ → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ) = ( 𝑀 ‘ ( 𝐺 ‘ ∅ ) ) ) |
19 |
|
riin0 |
⊢ ( 𝐼 = ∅ → ( 𝐴 ∩ ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ) = 𝐴 ) |
20 |
18 19
|
eqeq12d |
⊢ ( 𝐼 = ∅ → ( ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ) = ( 𝐴 ∩ ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ) ↔ ( 𝑀 ‘ ( 𝐺 ‘ ∅ ) ) = 𝐴 ) ) |
21 |
11 20
|
syl5ibrcom |
⊢ ( 𝐾 ∈ HL → ( 𝐼 = ∅ → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ) = ( 𝐴 ∩ ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ) ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) → ( 𝐼 = ∅ → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ) = ( 𝐴 ∩ ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ) ) ) |
23 |
1 2 4
|
pmapglbx |
⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ) = ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ) |
24 |
|
nfv |
⊢ Ⅎ 𝑖 𝐾 ∈ HL |
25 |
|
nfra1 |
⊢ Ⅎ 𝑖 ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 |
26 |
24 25
|
nfan |
⊢ Ⅎ 𝑖 ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) |
27 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝐼 ) → 𝑖 ∈ 𝐼 ) |
28 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝐼 ) → 𝐾 ∈ HL ) |
29 |
|
rspa |
⊢ ( ( ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝑖 ∈ 𝐼 ) → 𝑆 ∈ 𝐵 ) |
30 |
29
|
adantll |
⊢ ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝐼 ) → 𝑆 ∈ 𝐵 ) |
31 |
1 3 4
|
pmapssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑆 ) ⊆ 𝐴 ) |
32 |
28 30 31
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑀 ‘ 𝑆 ) ⊆ 𝐴 ) |
33 |
27 32
|
jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑖 ∈ 𝐼 ∧ ( 𝑀 ‘ 𝑆 ) ⊆ 𝐴 ) ) |
34 |
33
|
ex |
⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) → ( 𝑖 ∈ 𝐼 → ( 𝑖 ∈ 𝐼 ∧ ( 𝑀 ‘ 𝑆 ) ⊆ 𝐴 ) ) ) |
35 |
26 34
|
eximd |
⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) → ( ∃ 𝑖 𝑖 ∈ 𝐼 → ∃ 𝑖 ( 𝑖 ∈ 𝐼 ∧ ( 𝑀 ‘ 𝑆 ) ⊆ 𝐴 ) ) ) |
36 |
|
n0 |
⊢ ( 𝐼 ≠ ∅ ↔ ∃ 𝑖 𝑖 ∈ 𝐼 ) |
37 |
|
df-rex |
⊢ ( ∃ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ⊆ 𝐴 ↔ ∃ 𝑖 ( 𝑖 ∈ 𝐼 ∧ ( 𝑀 ‘ 𝑆 ) ⊆ 𝐴 ) ) |
38 |
35 36 37
|
3imtr4g |
⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) → ( 𝐼 ≠ ∅ → ∃ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ⊆ 𝐴 ) ) |
39 |
38
|
3impia |
⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) → ∃ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ⊆ 𝐴 ) |
40 |
|
iinss |
⊢ ( ∃ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ⊆ 𝐴 → ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ⊆ 𝐴 ) |
41 |
39 40
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) → ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ⊆ 𝐴 ) |
42 |
|
sseqin2 |
⊢ ( ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ⊆ 𝐴 ↔ ( 𝐴 ∩ ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ) = ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ) |
43 |
41 42
|
sylib |
⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) → ( 𝐴 ∩ ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ) = ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ) |
44 |
23 43
|
eqtr4d |
⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ) = ( 𝐴 ∩ ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ) ) |
45 |
44
|
3expia |
⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) → ( 𝐼 ≠ ∅ → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ) = ( 𝐴 ∩ ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ) ) ) |
46 |
22 45
|
pm2.61dne |
⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ) = ( 𝐴 ∩ ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ) ) |