Step |
Hyp |
Ref |
Expression |
1 |
|
pmapglb.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
pmapglb.g |
⊢ 𝐺 = ( glb ‘ 𝐾 ) |
3 |
|
pmapglb.m |
⊢ 𝑀 = ( pmap ‘ 𝐾 ) |
4 |
|
hlclat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ CLat ) |
5 |
4
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → 𝐾 ∈ CLat ) |
6 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
7 |
1 6
|
atbase |
⊢ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) → 𝑝 ∈ 𝐵 ) |
8 |
7
|
adantl |
⊢ ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → 𝑝 ∈ 𝐵 ) |
9 |
|
r19.29 |
⊢ ( ( ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 ) → ∃ 𝑖 ∈ 𝐼 ( 𝑆 ∈ 𝐵 ∧ 𝑦 = 𝑆 ) ) |
10 |
|
eleq1a |
⊢ ( 𝑆 ∈ 𝐵 → ( 𝑦 = 𝑆 → 𝑦 ∈ 𝐵 ) ) |
11 |
10
|
imp |
⊢ ( ( 𝑆 ∈ 𝐵 ∧ 𝑦 = 𝑆 ) → 𝑦 ∈ 𝐵 ) |
12 |
11
|
rexlimivw |
⊢ ( ∃ 𝑖 ∈ 𝐼 ( 𝑆 ∈ 𝐵 ∧ 𝑦 = 𝑆 ) → 𝑦 ∈ 𝐵 ) |
13 |
9 12
|
syl |
⊢ ( ( ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 ) → 𝑦 ∈ 𝐵 ) |
14 |
13
|
ex |
⊢ ( ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 → ( ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 → 𝑦 ∈ 𝐵 ) ) |
15 |
14
|
ad2antlr |
⊢ ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → ( ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 → 𝑦 ∈ 𝐵 ) ) |
16 |
15
|
abssdv |
⊢ ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ⊆ 𝐵 ) |
17 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
18 |
1 17 2
|
clatleglb |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑝 ∈ 𝐵 ∧ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ⊆ 𝐵 ) → ( 𝑝 ( le ‘ 𝐾 ) ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ↔ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ) |
19 |
5 8 16 18
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝑝 ( le ‘ 𝐾 ) ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ↔ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ) |
20 |
|
vex |
⊢ 𝑧 ∈ V |
21 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 = 𝑆 ↔ 𝑧 = 𝑆 ) ) |
22 |
21
|
rexbidv |
⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 ↔ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝑆 ) ) |
23 |
20 22
|
elab |
⊢ ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ↔ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝑆 ) |
24 |
23
|
imbi1i |
⊢ ( ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ↔ ( ∃ 𝑖 ∈ 𝐼 𝑧 = 𝑆 → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ) |
25 |
|
r19.23v |
⊢ ( ∀ 𝑖 ∈ 𝐼 ( 𝑧 = 𝑆 → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ↔ ( ∃ 𝑖 ∈ 𝐼 𝑧 = 𝑆 → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ) |
26 |
24 25
|
bitr4i |
⊢ ( ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑧 = 𝑆 → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ) |
27 |
26
|
albii |
⊢ ( ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ↔ ∀ 𝑧 ∀ 𝑖 ∈ 𝐼 ( 𝑧 = 𝑆 → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ) |
28 |
|
df-ral |
⊢ ( ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } 𝑝 ( le ‘ 𝐾 ) 𝑧 ↔ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ) |
29 |
|
ralcom4 |
⊢ ( ∀ 𝑖 ∈ 𝐼 ∀ 𝑧 ( 𝑧 = 𝑆 → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ↔ ∀ 𝑧 ∀ 𝑖 ∈ 𝐼 ( 𝑧 = 𝑆 → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ) |
30 |
27 28 29
|
3bitr4i |
⊢ ( ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } 𝑝 ( le ‘ 𝐾 ) 𝑧 ↔ ∀ 𝑖 ∈ 𝐼 ∀ 𝑧 ( 𝑧 = 𝑆 → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ) |
31 |
|
nfv |
⊢ Ⅎ 𝑧 𝑝 ( le ‘ 𝐾 ) 𝑆 |
32 |
|
breq2 |
⊢ ( 𝑧 = 𝑆 → ( 𝑝 ( le ‘ 𝐾 ) 𝑧 ↔ 𝑝 ( le ‘ 𝐾 ) 𝑆 ) ) |
33 |
31 32
|
ceqsalg |
⊢ ( 𝑆 ∈ 𝐵 → ( ∀ 𝑧 ( 𝑧 = 𝑆 → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ↔ 𝑝 ( le ‘ 𝐾 ) 𝑆 ) ) |
34 |
33
|
ralimi |
⊢ ( ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 → ∀ 𝑖 ∈ 𝐼 ( ∀ 𝑧 ( 𝑧 = 𝑆 → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ↔ 𝑝 ( le ‘ 𝐾 ) 𝑆 ) ) |
35 |
|
ralbi |
⊢ ( ∀ 𝑖 ∈ 𝐼 ( ∀ 𝑧 ( 𝑧 = 𝑆 → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ↔ 𝑝 ( le ‘ 𝐾 ) 𝑆 ) → ( ∀ 𝑖 ∈ 𝐼 ∀ 𝑧 ( 𝑧 = 𝑆 → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ↔ ∀ 𝑖 ∈ 𝐼 𝑝 ( le ‘ 𝐾 ) 𝑆 ) ) |
36 |
34 35
|
syl |
⊢ ( ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 → ( ∀ 𝑖 ∈ 𝐼 ∀ 𝑧 ( 𝑧 = 𝑆 → 𝑝 ( le ‘ 𝐾 ) 𝑧 ) ↔ ∀ 𝑖 ∈ 𝐼 𝑝 ( le ‘ 𝐾 ) 𝑆 ) ) |
37 |
30 36
|
syl5bb |
⊢ ( ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 → ( ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } 𝑝 ( le ‘ 𝐾 ) 𝑧 ↔ ∀ 𝑖 ∈ 𝐼 𝑝 ( le ‘ 𝐾 ) 𝑆 ) ) |
38 |
37
|
ad2antlr |
⊢ ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → ( ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } 𝑝 ( le ‘ 𝐾 ) 𝑧 ↔ ∀ 𝑖 ∈ 𝐼 𝑝 ( le ‘ 𝐾 ) 𝑆 ) ) |
39 |
19 38
|
bitrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝑝 ( le ‘ 𝐾 ) ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ↔ ∀ 𝑖 ∈ 𝐼 𝑝 ( le ‘ 𝐾 ) 𝑆 ) ) |
40 |
39
|
rabbidva |
⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) → { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) } = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ ∀ 𝑖 ∈ 𝐼 𝑝 ( le ‘ 𝐾 ) 𝑆 } ) |
41 |
40
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) → { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) } = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ ∀ 𝑖 ∈ 𝐼 𝑝 ( le ‘ 𝐾 ) 𝑆 } ) |
42 |
|
simp1 |
⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) → 𝐾 ∈ HL ) |
43 |
14
|
abssdv |
⊢ ( ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 → { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ⊆ 𝐵 ) |
44 |
1 2
|
clatglbcl |
⊢ ( ( 𝐾 ∈ CLat ∧ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ⊆ 𝐵 ) → ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ∈ 𝐵 ) |
45 |
4 43 44
|
syl2an |
⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) → ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ∈ 𝐵 ) |
46 |
45
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) → ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ∈ 𝐵 ) |
47 |
1 17 6 3
|
pmapval |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ∈ 𝐵 ) → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ) = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) } ) |
48 |
42 46 47
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ) = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) } ) |
49 |
|
iinrab |
⊢ ( 𝐼 ≠ ∅ → ∩ 𝑖 ∈ 𝐼 { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) 𝑆 } = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ ∀ 𝑖 ∈ 𝐼 𝑝 ( le ‘ 𝐾 ) 𝑆 } ) |
50 |
49
|
3ad2ant3 |
⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) → ∩ 𝑖 ∈ 𝐼 { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) 𝑆 } = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ ∀ 𝑖 ∈ 𝐼 𝑝 ( le ‘ 𝐾 ) 𝑆 } ) |
51 |
41 48 50
|
3eqtr4d |
⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ) = ∩ 𝑖 ∈ 𝐼 { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) 𝑆 } ) |
52 |
|
nfv |
⊢ Ⅎ 𝑖 𝐾 ∈ HL |
53 |
|
nfra1 |
⊢ Ⅎ 𝑖 ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 |
54 |
|
nfv |
⊢ Ⅎ 𝑖 𝐼 ≠ ∅ |
55 |
52 53 54
|
nf3an |
⊢ Ⅎ 𝑖 ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) |
56 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 𝑖 ∈ 𝐼 ) → 𝐾 ∈ HL ) |
57 |
|
rspa |
⊢ ( ( ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝑖 ∈ 𝐼 ) → 𝑆 ∈ 𝐵 ) |
58 |
57
|
3ad2antl2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 𝑖 ∈ 𝐼 ) → 𝑆 ∈ 𝐵 ) |
59 |
1 17 6 3
|
pmapval |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑆 ) = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) 𝑆 } ) |
60 |
56 58 59
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑀 ‘ 𝑆 ) = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) 𝑆 } ) |
61 |
55 60
|
iineq2d |
⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) → ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) = ∩ 𝑖 ∈ 𝐼 { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ( le ‘ 𝐾 ) 𝑆 } ) |
62 |
51 61
|
eqtr4d |
⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ) = ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ) |