Step |
Hyp |
Ref |
Expression |
1 |
|
pmapidcl.u |
⊢ 𝑈 = ( lub ‘ 𝐾 ) |
2 |
|
pmapidcl.m |
⊢ 𝑀 = ( pmap ‘ 𝐾 ) |
3 |
|
pmapidcl.c |
⊢ 𝐶 = ( PSubCl ‘ 𝐾 ) |
4 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
5 |
4 3
|
psubclssatN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ) → 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ) |
6 |
|
eqid |
⊢ ( ⊥𝑃 ‘ 𝐾 ) = ( ⊥𝑃 ‘ 𝐾 ) |
7 |
1 4 2 6
|
2polvalN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ) → ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝑋 ) ) = ( 𝑀 ‘ ( 𝑈 ‘ 𝑋 ) ) ) |
8 |
5 7
|
syldan |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ) → ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝑋 ) ) = ( 𝑀 ‘ ( 𝑈 ‘ 𝑋 ) ) ) |
9 |
6 3
|
psubcli2N |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ) → ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝑋 ) ) = 𝑋 ) |
10 |
8 9
|
eqtr3d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ) → ( 𝑀 ‘ ( 𝑈 ‘ 𝑋 ) ) = 𝑋 ) |