| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pmapj2.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							pmapj2.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							pmapj2.m | 
							⊢ 𝑀  =  ( pmap ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							pmapj2.p | 
							⊢  +   =  ( +𝑃 ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							pmapj2.o | 
							⊢  ⊥   =  ( ⊥𝑃 ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝐾  ∈  HL )  | 
						
						
							| 7 | 
							
								
							 | 
							hllat | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  Lat )  | 
						
						
							| 8 | 
							
								7
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝐾  ∈  Lat )  | 
						
						
							| 9 | 
							
								
							 | 
							hlop | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OP )  | 
						
						
							| 10 | 
							
								9
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝐾  ∈  OP )  | 
						
						
							| 11 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							⊢ ( oc ‘ 𝐾 )  =  ( oc ‘ 𝐾 )  | 
						
						
							| 13 | 
							
								1 12
							 | 
							opoccl | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵 )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∈  𝐵 )  | 
						
						
							| 14 | 
							
								10 11 13
							 | 
							syl2anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∈  𝐵 )  | 
						
						
							| 15 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑌  ∈  𝐵 )  | 
						
						
							| 16 | 
							
								1 12
							 | 
							opoccl | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑌  ∈  𝐵 )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∈  𝐵 )  | 
						
						
							| 17 | 
							
								10 15 16
							 | 
							syl2anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∈  𝐵 )  | 
						
						
							| 18 | 
							
								
							 | 
							eqid | 
							⊢ ( meet ‘ 𝐾 )  =  ( meet ‘ 𝐾 )  | 
						
						
							| 19 | 
							
								1 18
							 | 
							latmcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∈  𝐵  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∈  𝐵 )  →  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) )  ∈  𝐵 )  | 
						
						
							| 20 | 
							
								8 14 17 19
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) )  ∈  𝐵 )  | 
						
						
							| 21 | 
							
								1 12 3 5
							 | 
							polpmapN | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) )  ∈  𝐵 )  →  (  ⊥  ‘ ( 𝑀 ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) )  =  ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) )  | 
						
						
							| 22 | 
							
								6 20 21
							 | 
							syl2anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  (  ⊥  ‘ ( 𝑀 ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) )  =  ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) )  | 
						
						
							| 23 | 
							
								1 12 3 5
							 | 
							polpmapN | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  →  (  ⊥  ‘ ( 𝑀 ‘ 𝑋 ) )  =  ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							3adant3 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  (  ⊥  ‘ ( 𝑀 ‘ 𝑋 ) )  =  ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) )  | 
						
						
							| 25 | 
							
								1 12 3 5
							 | 
							polpmapN | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑌  ∈  𝐵 )  →  (  ⊥  ‘ ( 𝑀 ‘ 𝑌 ) )  =  ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							3adant2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  (  ⊥  ‘ ( 𝑀 ‘ 𝑌 ) )  =  ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) )  | 
						
						
							| 27 | 
							
								24 26
							 | 
							ineq12d | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( (  ⊥  ‘ ( 𝑀 ‘ 𝑋 ) )  ∩  (  ⊥  ‘ ( 𝑀 ‘ 𝑌 ) ) )  =  ( ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) )  ∩  ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) )  | 
						
						
							| 28 | 
							
								
							 | 
							eqid | 
							⊢ ( Atoms ‘ 𝐾 )  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 29 | 
							
								1 28 3
							 | 
							pmapssat | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  →  ( 𝑀 ‘ 𝑋 )  ⊆  ( Atoms ‘ 𝐾 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							3adant3 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑀 ‘ 𝑋 )  ⊆  ( Atoms ‘ 𝐾 ) )  | 
						
						
							| 31 | 
							
								1 28 3
							 | 
							pmapssat | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑌  ∈  𝐵 )  →  ( 𝑀 ‘ 𝑌 )  ⊆  ( Atoms ‘ 𝐾 ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							3adant2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑀 ‘ 𝑌 )  ⊆  ( Atoms ‘ 𝐾 ) )  | 
						
						
							| 33 | 
							
								28 4 5
							 | 
							poldmj1N | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑀 ‘ 𝑋 )  ⊆  ( Atoms ‘ 𝐾 )  ∧  ( 𝑀 ‘ 𝑌 )  ⊆  ( Atoms ‘ 𝐾 ) )  →  (  ⊥  ‘ ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ 𝑌 ) ) )  =  ( (  ⊥  ‘ ( 𝑀 ‘ 𝑋 ) )  ∩  (  ⊥  ‘ ( 𝑀 ‘ 𝑌 ) ) ) )  | 
						
						
							| 34 | 
							
								6 30 32 33
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  (  ⊥  ‘ ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ 𝑌 ) ) )  =  ( (  ⊥  ‘ ( 𝑀 ‘ 𝑋 ) )  ∩  (  ⊥  ‘ ( 𝑀 ‘ 𝑌 ) ) ) )  | 
						
						
							| 35 | 
							
								1 18 28 3
							 | 
							pmapmeet | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∈  𝐵  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∈  𝐵 )  →  ( 𝑀 ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) )  =  ( ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) )  ∩  ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) )  | 
						
						
							| 36 | 
							
								6 14 17 35
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑀 ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) )  =  ( ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) )  ∩  ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) )  | 
						
						
							| 37 | 
							
								27 34 36
							 | 
							3eqtr4rd | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑀 ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) )  =  (  ⊥  ‘ ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ 𝑌 ) ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							fveq2d | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  (  ⊥  ‘ ( 𝑀 ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) )  =  (  ⊥  ‘ (  ⊥  ‘ ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ 𝑌 ) ) ) ) )  | 
						
						
							| 39 | 
							
								
							 | 
							hlol | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OL )  | 
						
						
							| 40 | 
							
								1 2 18 12
							 | 
							oldmm4 | 
							⊢ ( ( 𝐾  ∈  OL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) )  =  ( 𝑋  ∨  𝑌 ) )  | 
						
						
							| 41 | 
							
								39 40
							 | 
							syl3an1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) )  =  ( 𝑋  ∨  𝑌 ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							fveq2d | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) )  =  ( 𝑀 ‘ ( 𝑋  ∨  𝑌 ) ) )  | 
						
						
							| 43 | 
							
								22 38 42
							 | 
							3eqtr3rd | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑀 ‘ ( 𝑋  ∨  𝑌 ) )  =  (  ⊥  ‘ (  ⊥  ‘ ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ 𝑌 ) ) ) ) )  |