| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmapjat.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
pmapjat.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
pmapjat.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 4 |
|
pmapjat.m |
⊢ 𝑀 = ( pmap ‘ 𝐾 ) |
| 5 |
|
pmapjat.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
| 6 |
|
simp1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → 𝐾 ∈ HL ) |
| 7 |
1 3
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
| 8 |
7
|
3ad2ant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ∈ 𝐵 ) |
| 9 |
1 3 4
|
pmapssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑄 ) ⊆ 𝐴 ) |
| 10 |
6 8 9
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑀 ‘ 𝑄 ) ⊆ 𝐴 ) |
| 11 |
3 5
|
padd02 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑀 ‘ 𝑄 ) ⊆ 𝐴 ) → ( ∅ + ( 𝑀 ‘ 𝑄 ) ) = ( 𝑀 ‘ 𝑄 ) ) |
| 12 |
6 10 11
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ∅ + ( 𝑀 ‘ 𝑄 ) ) = ( 𝑀 ‘ 𝑄 ) ) |
| 13 |
12
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 = ( 0. ‘ 𝐾 ) ) → ( ∅ + ( 𝑀 ‘ 𝑄 ) ) = ( 𝑀 ‘ 𝑄 ) ) |
| 14 |
|
fveq2 |
⊢ ( 𝑋 = ( 0. ‘ 𝐾 ) → ( 𝑀 ‘ 𝑋 ) = ( 𝑀 ‘ ( 0. ‘ 𝐾 ) ) ) |
| 15 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
| 16 |
15
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → 𝐾 ∈ AtLat ) |
| 17 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
| 18 |
17 4
|
pmap0 |
⊢ ( 𝐾 ∈ AtLat → ( 𝑀 ‘ ( 0. ‘ 𝐾 ) ) = ∅ ) |
| 19 |
16 18
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑀 ‘ ( 0. ‘ 𝐾 ) ) = ∅ ) |
| 20 |
14 19
|
sylan9eqr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 = ( 0. ‘ 𝐾 ) ) → ( 𝑀 ‘ 𝑋 ) = ∅ ) |
| 21 |
20
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 = ( 0. ‘ 𝐾 ) ) → ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) = ( ∅ + ( 𝑀 ‘ 𝑄 ) ) ) |
| 22 |
|
oveq1 |
⊢ ( 𝑋 = ( 0. ‘ 𝐾 ) → ( 𝑋 ∨ 𝑄 ) = ( ( 0. ‘ 𝐾 ) ∨ 𝑄 ) ) |
| 23 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
| 24 |
23
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → 𝐾 ∈ OL ) |
| 25 |
1 2 17
|
olj02 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑄 ∈ 𝐵 ) → ( ( 0. ‘ 𝐾 ) ∨ 𝑄 ) = 𝑄 ) |
| 26 |
24 8 25
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ( 0. ‘ 𝐾 ) ∨ 𝑄 ) = 𝑄 ) |
| 27 |
22 26
|
sylan9eqr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 = ( 0. ‘ 𝐾 ) ) → ( 𝑋 ∨ 𝑄 ) = 𝑄 ) |
| 28 |
27
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 = ( 0. ‘ 𝐾 ) ) → ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) = ( 𝑀 ‘ 𝑄 ) ) |
| 29 |
13 21 28
|
3eqtr4rd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 = ( 0. ‘ 𝐾 ) ) → ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) = ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ) |
| 30 |
|
simpll1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) ∧ 𝑝 ∈ 𝐴 ) → 𝐾 ∈ HL ) |
| 31 |
30
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) → 𝐾 ∈ HL ) |
| 32 |
|
simpll2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) ∧ 𝑝 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) |
| 33 |
32
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) → 𝑋 ∈ 𝐵 ) |
| 34 |
|
simplr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) → 𝑝 ∈ 𝐴 ) |
| 35 |
|
simpll3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) ∧ 𝑝 ∈ 𝐴 ) → 𝑄 ∈ 𝐴 ) |
| 36 |
35
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) → 𝑄 ∈ 𝐴 ) |
| 37 |
33 34 36
|
3jca |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) → ( 𝑋 ∈ 𝐵 ∧ 𝑝 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) |
| 38 |
|
simpllr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) → 𝑋 ≠ ( 0. ‘ 𝐾 ) ) |
| 39 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) → 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) |
| 40 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
| 41 |
1 40 2 17 3
|
cvrat42 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑝 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑋 ≠ ( 0. ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) → ∃ 𝑞 ∈ 𝐴 ( 𝑞 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑄 ) ) ) ) |
| 42 |
41
|
imp |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑝 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( 𝑋 ≠ ( 0. ‘ 𝐾 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) ) → ∃ 𝑞 ∈ 𝐴 ( 𝑞 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑄 ) ) ) |
| 43 |
31 37 38 39 42
|
syl22anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) → ∃ 𝑞 ∈ 𝐴 ( 𝑞 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑄 ) ) ) |
| 44 |
43
|
ex |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) ∧ 𝑝 ∈ 𝐴 ) → ( 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) → ∃ 𝑞 ∈ 𝐴 ( 𝑞 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑄 ) ) ) ) |
| 45 |
1 40 3 4
|
elpmap |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ↔ ( 𝑞 ∈ 𝐴 ∧ 𝑞 ( le ‘ 𝐾 ) 𝑋 ) ) ) |
| 46 |
45
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ↔ ( 𝑞 ∈ 𝐴 ∧ 𝑞 ( le ‘ 𝐾 ) 𝑋 ) ) ) |
| 47 |
|
df-rex |
⊢ ( ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ↔ ∃ 𝑟 ( 𝑟 ∈ ( 𝑀 ‘ 𝑄 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ) |
| 48 |
3 4
|
elpmapat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ) → ( 𝑟 ∈ ( 𝑀 ‘ 𝑄 ) ↔ 𝑟 = 𝑄 ) ) |
| 49 |
48
|
3adant2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑟 ∈ ( 𝑀 ‘ 𝑄 ) ↔ 𝑟 = 𝑄 ) ) |
| 50 |
49
|
anbi1d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ( 𝑟 ∈ ( 𝑀 ‘ 𝑄 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ↔ ( 𝑟 = 𝑄 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ) ) |
| 51 |
50
|
exbidv |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ∃ 𝑟 ( 𝑟 ∈ ( 𝑀 ‘ 𝑄 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ↔ ∃ 𝑟 ( 𝑟 = 𝑄 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ) ) |
| 52 |
47 51
|
bitr2id |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ∃ 𝑟 ( 𝑟 = 𝑄 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ↔ ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ) |
| 53 |
|
oveq2 |
⊢ ( 𝑟 = 𝑄 → ( 𝑞 ∨ 𝑟 ) = ( 𝑞 ∨ 𝑄 ) ) |
| 54 |
53
|
breq2d |
⊢ ( 𝑟 = 𝑄 → ( 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ↔ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑄 ) ) ) |
| 55 |
54
|
ceqsexgv |
⊢ ( 𝑄 ∈ 𝐴 → ( ∃ 𝑟 ( 𝑟 = 𝑄 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ↔ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑄 ) ) ) |
| 56 |
55
|
3ad2ant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ∃ 𝑟 ( 𝑟 = 𝑄 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ↔ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑄 ) ) ) |
| 57 |
52 56
|
bitr3d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ↔ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑄 ) ) ) |
| 58 |
46 57
|
anbi12d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ( 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ∧ ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ↔ ( ( 𝑞 ∈ 𝐴 ∧ 𝑞 ( le ‘ 𝐾 ) 𝑋 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑄 ) ) ) ) |
| 59 |
|
anass |
⊢ ( ( ( 𝑞 ∈ 𝐴 ∧ 𝑞 ( le ‘ 𝐾 ) 𝑋 ) ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑄 ) ) ↔ ( 𝑞 ∈ 𝐴 ∧ ( 𝑞 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑄 ) ) ) ) |
| 60 |
58 59
|
bitrdi |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ( 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ∧ ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ↔ ( 𝑞 ∈ 𝐴 ∧ ( 𝑞 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑄 ) ) ) ) ) |
| 61 |
60
|
rexbidv2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ∃ 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ↔ ∃ 𝑞 ∈ 𝐴 ( 𝑞 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑄 ) ) ) ) |
| 62 |
61
|
ad2antrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) ∧ 𝑝 ∈ 𝐴 ) → ( ∃ 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ↔ ∃ 𝑞 ∈ 𝐴 ( 𝑞 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑄 ) ) ) ) |
| 63 |
44 62
|
sylibrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) ∧ 𝑝 ∈ 𝐴 ) → ( 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) → ∃ 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ) |
| 64 |
63
|
imdistanda |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) → ( ( 𝑝 ∈ 𝐴 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) → ( 𝑝 ∈ 𝐴 ∧ ∃ 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ) ) |
| 65 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
| 66 |
65
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → 𝐾 ∈ Lat ) |
| 67 |
|
simp2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) |
| 68 |
1 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑄 ) ∈ 𝐵 ) |
| 69 |
66 67 8 68
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑋 ∨ 𝑄 ) ∈ 𝐵 ) |
| 70 |
1 40 3 4
|
elpmap |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∨ 𝑄 ) ∈ 𝐵 ) → ( 𝑝 ∈ ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) ↔ ( 𝑝 ∈ 𝐴 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) ) ) |
| 71 |
6 69 70
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑝 ∈ ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) ↔ ( 𝑝 ∈ 𝐴 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) ) ) |
| 72 |
71
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) → ( 𝑝 ∈ ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) ↔ ( 𝑝 ∈ 𝐴 ∧ 𝑝 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑄 ) ) ) ) |
| 73 |
1 3 4
|
pmapssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) ⊆ 𝐴 ) |
| 74 |
73
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑀 ‘ 𝑋 ) ⊆ 𝐴 ) |
| 75 |
66 74 10
|
3jca |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝐾 ∈ Lat ∧ ( 𝑀 ‘ 𝑋 ) ⊆ 𝐴 ∧ ( 𝑀 ‘ 𝑄 ) ⊆ 𝐴 ) ) |
| 76 |
75
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) → ( 𝐾 ∈ Lat ∧ ( 𝑀 ‘ 𝑋 ) ⊆ 𝐴 ∧ ( 𝑀 ‘ 𝑄 ) ⊆ 𝐴 ) ) |
| 77 |
1 17 4
|
pmapeq0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑋 ) = ∅ ↔ 𝑋 = ( 0. ‘ 𝐾 ) ) ) |
| 78 |
77
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ( 𝑀 ‘ 𝑋 ) = ∅ ↔ 𝑋 = ( 0. ‘ 𝐾 ) ) ) |
| 79 |
78
|
necon3bid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ( 𝑀 ‘ 𝑋 ) ≠ ∅ ↔ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) ) |
| 80 |
79
|
biimpar |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) → ( 𝑀 ‘ 𝑋 ) ≠ ∅ ) |
| 81 |
|
simp3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ∈ 𝐴 ) |
| 82 |
17 3
|
atn0 |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ≠ ( 0. ‘ 𝐾 ) ) |
| 83 |
16 81 82
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ≠ ( 0. ‘ 𝐾 ) ) |
| 84 |
1 17 4
|
pmapeq0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑄 ) = ∅ ↔ 𝑄 = ( 0. ‘ 𝐾 ) ) ) |
| 85 |
6 8 84
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ( 𝑀 ‘ 𝑄 ) = ∅ ↔ 𝑄 = ( 0. ‘ 𝐾 ) ) ) |
| 86 |
85
|
necon3bid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ( 𝑀 ‘ 𝑄 ) ≠ ∅ ↔ 𝑄 ≠ ( 0. ‘ 𝐾 ) ) ) |
| 87 |
83 86
|
mpbird |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑀 ‘ 𝑄 ) ≠ ∅ ) |
| 88 |
87
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) → ( 𝑀 ‘ 𝑄 ) ≠ ∅ ) |
| 89 |
40 2 3 5
|
elpaddn0 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑀 ‘ 𝑋 ) ⊆ 𝐴 ∧ ( 𝑀 ‘ 𝑄 ) ⊆ 𝐴 ) ∧ ( ( 𝑀 ‘ 𝑋 ) ≠ ∅ ∧ ( 𝑀 ‘ 𝑄 ) ≠ ∅ ) ) → ( 𝑝 ∈ ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ↔ ( 𝑝 ∈ 𝐴 ∧ ∃ 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ) ) |
| 90 |
76 80 88 89
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) → ( 𝑝 ∈ ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ↔ ( 𝑝 ∈ 𝐴 ∧ ∃ 𝑞 ∈ ( 𝑀 ‘ 𝑋 ) ∃ 𝑟 ∈ ( 𝑀 ‘ 𝑄 ) 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ∨ 𝑟 ) ) ) ) |
| 91 |
64 72 90
|
3imtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) → ( 𝑝 ∈ ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) → 𝑝 ∈ ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ) ) |
| 92 |
91
|
ssrdv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) → ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) ⊆ ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ) |
| 93 |
1 2 4 5
|
pmapjoin |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ⊆ ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) ) |
| 94 |
66 67 8 93
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ⊆ ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) ) |
| 95 |
94
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) → ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ⊆ ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) ) |
| 96 |
92 95
|
eqssd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ( 0. ‘ 𝐾 ) ) → ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) = ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ) |
| 97 |
29 96
|
pm2.61dane |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) = ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ) |