| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmapjat.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
pmapjat.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
pmapjat.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 4 |
|
pmapjat.m |
⊢ 𝑀 = ( pmap ‘ 𝐾 ) |
| 5 |
|
pmapjat.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
| 6 |
1 2 3 4 5
|
pmapjat1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) = ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ) |
| 7 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
| 8 |
7
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → 𝐾 ∈ Lat ) |
| 9 |
1 3
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
| 10 |
9
|
3ad2ant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ∈ 𝐵 ) |
| 11 |
|
simp2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) |
| 12 |
1 2
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑄 ∨ 𝑋 ) = ( 𝑋 ∨ 𝑄 ) ) |
| 13 |
8 10 11 12
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑄 ∨ 𝑋 ) = ( 𝑋 ∨ 𝑄 ) ) |
| 14 |
13
|
fveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑀 ‘ ( 𝑄 ∨ 𝑋 ) ) = ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) ) |
| 15 |
|
simp1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → 𝐾 ∈ HL ) |
| 16 |
1 3 4
|
pmapssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑄 ) ⊆ 𝐴 ) |
| 17 |
15 10 16
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑀 ‘ 𝑄 ) ⊆ 𝐴 ) |
| 18 |
1 3 4
|
pmapssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) ⊆ 𝐴 ) |
| 19 |
18
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑀 ‘ 𝑋 ) ⊆ 𝐴 ) |
| 20 |
3 5
|
paddcom |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑀 ‘ 𝑄 ) ⊆ 𝐴 ∧ ( 𝑀 ‘ 𝑋 ) ⊆ 𝐴 ) → ( ( 𝑀 ‘ 𝑄 ) + ( 𝑀 ‘ 𝑋 ) ) = ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ) |
| 21 |
8 17 19 20
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ( 𝑀 ‘ 𝑄 ) + ( 𝑀 ‘ 𝑋 ) ) = ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ) |
| 22 |
6 14 21
|
3eqtr4d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑀 ‘ ( 𝑄 ∨ 𝑋 ) ) = ( ( 𝑀 ‘ 𝑄 ) + ( 𝑀 ‘ 𝑋 ) ) ) |