Step |
Hyp |
Ref |
Expression |
1 |
|
pmapjat.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
pmapjat.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
pmapjat.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
pmapjat.m |
⊢ 𝑀 = ( pmap ‘ 𝐾 ) |
5 |
|
pmapjat.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
6 |
1 2 3 4 5
|
pmapjat1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) = ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ) |
7 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
8 |
7
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → 𝐾 ∈ Lat ) |
9 |
1 3
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
10 |
9
|
3ad2ant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ∈ 𝐵 ) |
11 |
|
simp2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) |
12 |
1 2
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑄 ∨ 𝑋 ) = ( 𝑋 ∨ 𝑄 ) ) |
13 |
8 10 11 12
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑄 ∨ 𝑋 ) = ( 𝑋 ∨ 𝑄 ) ) |
14 |
13
|
fveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑀 ‘ ( 𝑄 ∨ 𝑋 ) ) = ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) ) |
15 |
|
simp1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → 𝐾 ∈ HL ) |
16 |
1 3 4
|
pmapssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑄 ) ⊆ 𝐴 ) |
17 |
15 10 16
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑀 ‘ 𝑄 ) ⊆ 𝐴 ) |
18 |
1 3 4
|
pmapssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) ⊆ 𝐴 ) |
19 |
18
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑀 ‘ 𝑋 ) ⊆ 𝐴 ) |
20 |
3 5
|
paddcom |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑀 ‘ 𝑄 ) ⊆ 𝐴 ∧ ( 𝑀 ‘ 𝑋 ) ⊆ 𝐴 ) → ( ( 𝑀 ‘ 𝑄 ) + ( 𝑀 ‘ 𝑋 ) ) = ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ) |
21 |
8 17 19 20
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( ( 𝑀 ‘ 𝑄 ) + ( 𝑀 ‘ 𝑋 ) ) = ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ) |
22 |
6 14 21
|
3eqtr4d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑀 ‘ ( 𝑄 ∨ 𝑋 ) ) = ( ( 𝑀 ‘ 𝑄 ) + ( 𝑀 ‘ 𝑋 ) ) ) |