Step |
Hyp |
Ref |
Expression |
1 |
|
pmapjat.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
pmapjat.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
pmapjat.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
pmapjat.m |
⊢ 𝑀 = ( pmap ‘ 𝐾 ) |
5 |
|
pmapjat.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
6 |
|
simpl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝐾 ∈ HL ) |
7 |
1 3 4
|
pmapssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) ⊆ 𝐴 ) |
8 |
7
|
3ad2antr1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑀 ‘ 𝑋 ) ⊆ 𝐴 ) |
9 |
|
simpr2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑄 ∈ 𝐴 ) |
10 |
1 3
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
11 |
9 10
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑄 ∈ 𝐵 ) |
12 |
1 3 4
|
pmapssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑄 ) ⊆ 𝐴 ) |
13 |
11 12
|
syldan |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑀 ‘ 𝑄 ) ⊆ 𝐴 ) |
14 |
|
simpr3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑅 ∈ 𝐴 ) |
15 |
1 3
|
atbase |
⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ 𝐵 ) |
16 |
14 15
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑅 ∈ 𝐵 ) |
17 |
1 3 4
|
pmapssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑅 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑅 ) ⊆ 𝐴 ) |
18 |
16 17
|
syldan |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑀 ‘ 𝑅 ) ⊆ 𝐴 ) |
19 |
3 5
|
paddass |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑀 ‘ 𝑋 ) ⊆ 𝐴 ∧ ( 𝑀 ‘ 𝑄 ) ⊆ 𝐴 ∧ ( 𝑀 ‘ 𝑅 ) ⊆ 𝐴 ) ) → ( ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) + ( 𝑀 ‘ 𝑅 ) ) = ( ( 𝑀 ‘ 𝑋 ) + ( ( 𝑀 ‘ 𝑄 ) + ( 𝑀 ‘ 𝑅 ) ) ) ) |
20 |
6 8 13 18 19
|
syl13anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) + ( 𝑀 ‘ 𝑅 ) ) = ( ( 𝑀 ‘ 𝑋 ) + ( ( 𝑀 ‘ 𝑄 ) + ( 𝑀 ‘ 𝑅 ) ) ) ) |
21 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
22 |
21
|
adantr |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝐾 ∈ Lat ) |
23 |
|
simpr1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑋 ∈ 𝐵 ) |
24 |
1 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑄 ) ∈ 𝐵 ) |
25 |
22 23 11 24
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑋 ∨ 𝑄 ) ∈ 𝐵 ) |
26 |
1 2 3 4 5
|
pmapjat1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∨ 𝑄 ) ∈ 𝐵 ∧ 𝑅 ∈ 𝐴 ) → ( 𝑀 ‘ ( ( 𝑋 ∨ 𝑄 ) ∨ 𝑅 ) ) = ( ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) + ( 𝑀 ‘ 𝑅 ) ) ) |
27 |
6 25 14 26
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑀 ‘ ( ( 𝑋 ∨ 𝑄 ) ∨ 𝑅 ) ) = ( ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) + ( 𝑀 ‘ 𝑅 ) ) ) |
28 |
1 2
|
latjass |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ∧ 𝑅 ∈ 𝐵 ) ) → ( ( 𝑋 ∨ 𝑄 ) ∨ 𝑅 ) = ( 𝑋 ∨ ( 𝑄 ∨ 𝑅 ) ) ) |
29 |
22 23 11 16 28
|
syl13anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( ( 𝑋 ∨ 𝑄 ) ∨ 𝑅 ) = ( 𝑋 ∨ ( 𝑄 ∨ 𝑅 ) ) ) |
30 |
29
|
fveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑀 ‘ ( ( 𝑋 ∨ 𝑄 ) ∨ 𝑅 ) ) = ( 𝑀 ‘ ( 𝑋 ∨ ( 𝑄 ∨ 𝑅 ) ) ) ) |
31 |
1 2 3 4 5
|
pmapjat1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) = ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ) |
32 |
31
|
3adant3r3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) = ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ) |
33 |
32
|
oveq1d |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) + ( 𝑀 ‘ 𝑅 ) ) = ( ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) + ( 𝑀 ‘ 𝑅 ) ) ) |
34 |
27 30 33
|
3eqtr3d |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑀 ‘ ( 𝑋 ∨ ( 𝑄 ∨ 𝑅 ) ) ) = ( ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) + ( 𝑀 ‘ 𝑅 ) ) ) |
35 |
1 2 3 4 5
|
pmapjat1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐵 ∧ 𝑅 ∈ 𝐴 ) → ( 𝑀 ‘ ( 𝑄 ∨ 𝑅 ) ) = ( ( 𝑀 ‘ 𝑄 ) + ( 𝑀 ‘ 𝑅 ) ) ) |
36 |
6 11 14 35
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑀 ‘ ( 𝑄 ∨ 𝑅 ) ) = ( ( 𝑀 ‘ 𝑄 ) + ( 𝑀 ‘ 𝑅 ) ) ) |
37 |
36
|
oveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ ( 𝑄 ∨ 𝑅 ) ) ) = ( ( 𝑀 ‘ 𝑋 ) + ( ( 𝑀 ‘ 𝑄 ) + ( 𝑀 ‘ 𝑅 ) ) ) ) |
38 |
20 34 37
|
3eqtr4d |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑀 ‘ ( 𝑋 ∨ ( 𝑄 ∨ 𝑅 ) ) ) = ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ ( 𝑄 ∨ 𝑅 ) ) ) ) |