Step |
Hyp |
Ref |
Expression |
1 |
|
pmaple.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
pmaple.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
pmaple.m |
⊢ 𝑀 = ( pmap ‘ 𝐾 ) |
4 |
|
hlpos |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Poset ) |
5 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
6 |
1 5
|
atbase |
⊢ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) → 𝑝 ∈ 𝐵 ) |
7 |
1 2
|
postr |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑝 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌 ) → 𝑝 ≤ 𝑌 ) ) |
8 |
7
|
exp4b |
⊢ ( 𝐾 ∈ Poset → ( ( 𝑝 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑝 ≤ 𝑋 → ( 𝑋 ≤ 𝑌 → 𝑝 ≤ 𝑌 ) ) ) ) |
9 |
8
|
3expd |
⊢ ( 𝐾 ∈ Poset → ( 𝑝 ∈ 𝐵 → ( 𝑋 ∈ 𝐵 → ( 𝑌 ∈ 𝐵 → ( 𝑝 ≤ 𝑋 → ( 𝑋 ≤ 𝑌 → 𝑝 ≤ 𝑌 ) ) ) ) ) ) |
10 |
9
|
com23 |
⊢ ( 𝐾 ∈ Poset → ( 𝑋 ∈ 𝐵 → ( 𝑝 ∈ 𝐵 → ( 𝑌 ∈ 𝐵 → ( 𝑝 ≤ 𝑋 → ( 𝑋 ≤ 𝑌 → 𝑝 ≤ 𝑌 ) ) ) ) ) ) |
11 |
10
|
com34 |
⊢ ( 𝐾 ∈ Poset → ( 𝑋 ∈ 𝐵 → ( 𝑌 ∈ 𝐵 → ( 𝑝 ∈ 𝐵 → ( 𝑝 ≤ 𝑋 → ( 𝑋 ≤ 𝑌 → 𝑝 ≤ 𝑌 ) ) ) ) ) ) |
12 |
11
|
3imp |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑝 ∈ 𝐵 → ( 𝑝 ≤ 𝑋 → ( 𝑋 ≤ 𝑌 → 𝑝 ≤ 𝑌 ) ) ) ) |
13 |
6 12
|
syl5 |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) → ( 𝑝 ≤ 𝑋 → ( 𝑋 ≤ 𝑌 → 𝑝 ≤ 𝑌 ) ) ) ) |
14 |
13
|
com34 |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) → ( 𝑋 ≤ 𝑌 → ( 𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌 ) ) ) ) |
15 |
14
|
com23 |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 → ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) → ( 𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌 ) ) ) ) |
16 |
15
|
ralrimdv |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 → ∀ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ( 𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌 ) ) ) |
17 |
4 16
|
syl3an1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 → ∀ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ( 𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌 ) ) ) |
18 |
|
ss2rab |
⊢ ( { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ⊆ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ↔ ∀ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ( 𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌 ) ) |
19 |
17 18
|
syl6ibr |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 → { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ⊆ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ) ) |
20 |
|
hlclat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ CLat ) |
21 |
|
ssrab2 |
⊢ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ⊆ ( Atoms ‘ 𝐾 ) |
22 |
1 5
|
atssbase |
⊢ ( Atoms ‘ 𝐾 ) ⊆ 𝐵 |
23 |
21 22
|
sstri |
⊢ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ⊆ 𝐵 |
24 |
|
eqid |
⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) |
25 |
1 2 24
|
lubss |
⊢ ( ( 𝐾 ∈ CLat ∧ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ⊆ 𝐵 ∧ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ⊆ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ) → ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ) ≤ ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ) ) |
26 |
23 25
|
mp3an2 |
⊢ ( ( 𝐾 ∈ CLat ∧ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ⊆ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ) → ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ) ≤ ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ) ) |
27 |
26
|
ex |
⊢ ( 𝐾 ∈ CLat → ( { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ⊆ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } → ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ) ≤ ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ) ) ) |
28 |
20 27
|
syl |
⊢ ( 𝐾 ∈ HL → ( { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ⊆ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } → ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ) ≤ ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ) ) ) |
29 |
28
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ⊆ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } → ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ) ≤ ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ) ) ) |
30 |
|
hlomcmat |
⊢ ( 𝐾 ∈ HL → ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ) |
31 |
30
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ) |
32 |
|
simp2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
33 |
1 2 24 5
|
atlatmstc |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ) = 𝑋 ) |
34 |
31 32 33
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ) = 𝑋 ) |
35 |
|
simp3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
36 |
1 2 24 5
|
atlatmstc |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑌 ∈ 𝐵 ) → ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ) = 𝑌 ) |
37 |
31 35 36
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ) = 𝑌 ) |
38 |
34 37
|
breq12d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ) ≤ ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ) ↔ 𝑋 ≤ 𝑌 ) ) |
39 |
29 38
|
sylibd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ⊆ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } → 𝑋 ≤ 𝑌 ) ) |
40 |
19 39
|
impbid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ↔ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ⊆ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ) ) |
41 |
1 2 5 3
|
pmapval |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ) |
42 |
41
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ) |
43 |
1 2 5 3
|
pmapval |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑌 ) = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ) |
44 |
43
|
3adant2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑌 ) = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ) |
45 |
42 44
|
sseq12d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑋 ) ⊆ ( 𝑀 ‘ 𝑌 ) ↔ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ⊆ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ) ) |
46 |
40 45
|
bitr4d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ↔ ( 𝑀 ‘ 𝑋 ) ⊆ ( 𝑀 ‘ 𝑌 ) ) ) |