| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pmapojoin.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							pmapojoin.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							pmapojoin.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							pmapojoin.m | 
							⊢ 𝑀  =  ( pmap ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							pmapojoin.o | 
							⊢  ⊥   =  ( oc ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							pmapojoin.p | 
							⊢  +   =  ( +𝑃 ‘ 𝐾 )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							⊢ ( ⊥𝑃 ‘ 𝐾 )  =  ( ⊥𝑃 ‘ 𝐾 )  | 
						
						
							| 8 | 
							
								1 3 4 6 7
							 | 
							pmapj2N | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑀 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ 𝑌 ) ) ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantr | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  (  ⊥  ‘ 𝑌 ) )  →  ( 𝑀 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ 𝑌 ) ) ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							simpl1 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  (  ⊥  ‘ 𝑌 ) )  →  𝐾  ∈  HL )  | 
						
						
							| 11 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  (  ⊥  ‘ 𝑌 ) )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							⊢ ( PSubCl ‘ 𝐾 )  =  ( PSubCl ‘ 𝐾 )  | 
						
						
							| 13 | 
							
								1 4 12
							 | 
							pmapsubclN | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  →  ( 𝑀 ‘ 𝑋 )  ∈  ( PSubCl ‘ 𝐾 ) )  | 
						
						
							| 14 | 
							
								10 11 13
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  (  ⊥  ‘ 𝑌 ) )  →  ( 𝑀 ‘ 𝑋 )  ∈  ( PSubCl ‘ 𝐾 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							simpl3 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  (  ⊥  ‘ 𝑌 ) )  →  𝑌  ∈  𝐵 )  | 
						
						
							| 16 | 
							
								1 4 12
							 | 
							pmapsubclN | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑌  ∈  𝐵 )  →  ( 𝑀 ‘ 𝑌 )  ∈  ( PSubCl ‘ 𝐾 ) )  | 
						
						
							| 17 | 
							
								10 15 16
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  (  ⊥  ‘ 𝑌 ) )  →  ( 𝑀 ‘ 𝑌 )  ∈  ( PSubCl ‘ 𝐾 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							hlop | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OP )  | 
						
						
							| 19 | 
							
								18
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝐾  ∈  OP )  | 
						
						
							| 20 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑌  ∈  𝐵 )  | 
						
						
							| 21 | 
							
								1 5
							 | 
							opoccl | 
							⊢ ( ( 𝐾  ∈  OP  ∧  𝑌  ∈  𝐵 )  →  (  ⊥  ‘ 𝑌 )  ∈  𝐵 )  | 
						
						
							| 22 | 
							
								19 20 21
							 | 
							syl2anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  (  ⊥  ‘ 𝑌 )  ∈  𝐵 )  | 
						
						
							| 23 | 
							
								1 2 4
							 | 
							pmaple | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  (  ⊥  ‘ 𝑌 )  ∈  𝐵 )  →  ( 𝑋  ≤  (  ⊥  ‘ 𝑌 )  ↔  ( 𝑀 ‘ 𝑋 )  ⊆  ( 𝑀 ‘ (  ⊥  ‘ 𝑌 ) ) ) )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							syld3an3 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ≤  (  ⊥  ‘ 𝑌 )  ↔  ( 𝑀 ‘ 𝑋 )  ⊆  ( 𝑀 ‘ (  ⊥  ‘ 𝑌 ) ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							biimpa | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  (  ⊥  ‘ 𝑌 ) )  →  ( 𝑀 ‘ 𝑋 )  ⊆  ( 𝑀 ‘ (  ⊥  ‘ 𝑌 ) ) )  | 
						
						
							| 26 | 
							
								1 5 4 7
							 | 
							polpmapN | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑌  ∈  𝐵 )  →  ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝑌 ) )  =  ( 𝑀 ‘ (  ⊥  ‘ 𝑌 ) ) )  | 
						
						
							| 27 | 
							
								10 15 26
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  (  ⊥  ‘ 𝑌 ) )  →  ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝑌 ) )  =  ( 𝑀 ‘ (  ⊥  ‘ 𝑌 ) ) )  | 
						
						
							| 28 | 
							
								25 27
							 | 
							sseqtrrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  (  ⊥  ‘ 𝑌 ) )  →  ( 𝑀 ‘ 𝑋 )  ⊆  ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝑌 ) ) )  | 
						
						
							| 29 | 
							
								6 7 12
							 | 
							osumclN | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑀 ‘ 𝑋 )  ∈  ( PSubCl ‘ 𝐾 )  ∧  ( 𝑀 ‘ 𝑌 )  ∈  ( PSubCl ‘ 𝐾 ) )  ∧  ( 𝑀 ‘ 𝑋 )  ⊆  ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝑌 ) ) )  →  ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ 𝑌 ) )  ∈  ( PSubCl ‘ 𝐾 ) )  | 
						
						
							| 30 | 
							
								10 14 17 28 29
							 | 
							syl31anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  (  ⊥  ‘ 𝑌 ) )  →  ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ 𝑌 ) )  ∈  ( PSubCl ‘ 𝐾 ) )  | 
						
						
							| 31 | 
							
								7 12
							 | 
							psubcli2N | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ 𝑌 ) )  ∈  ( PSubCl ‘ 𝐾 ) )  →  ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ 𝑌 ) ) ) )  =  ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ 𝑌 ) ) )  | 
						
						
							| 32 | 
							
								10 30 31
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  (  ⊥  ‘ 𝑌 ) )  →  ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ 𝑌 ) ) ) )  =  ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ 𝑌 ) ) )  | 
						
						
							| 33 | 
							
								9 32
							 | 
							eqtrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  (  ⊥  ‘ 𝑌 ) )  →  ( 𝑀 ‘ ( 𝑋  ∨  𝑌 ) )  =  ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ 𝑌 ) ) )  |