Description: The projective map of a Hilbert lattice is a set of atoms. (Contributed by NM, 14-Jan-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pmapssat.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
pmapssat.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
pmapssat.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | ||
Assertion | pmapssat | ⊢ ( ( 𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) ⊆ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmapssat.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
2 | pmapssat.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
3 | pmapssat.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | |
4 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
5 | 1 4 2 3 | pmapval | ⊢ ( ( 𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) = { 𝑝 ∈ 𝐴 ∣ 𝑝 ( le ‘ 𝐾 ) 𝑋 } ) |
6 | ssrab2 | ⊢ { 𝑝 ∈ 𝐴 ∣ 𝑝 ( le ‘ 𝐾 ) 𝑋 } ⊆ 𝐴 | |
7 | 5 6 | eqsstrdi | ⊢ ( ( 𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) ⊆ 𝐴 ) |