Metamath Proof Explorer


Theorem pmapssat

Description: The projective map of a Hilbert lattice is a set of atoms. (Contributed by NM, 14-Jan-2012)

Ref Expression
Hypotheses pmapssat.b 𝐵 = ( Base ‘ 𝐾 )
pmapssat.a 𝐴 = ( Atoms ‘ 𝐾 )
pmapssat.m 𝑀 = ( pmap ‘ 𝐾 )
Assertion pmapssat ( ( 𝐾𝐶𝑋𝐵 ) → ( 𝑀𝑋 ) ⊆ 𝐴 )

Proof

Step Hyp Ref Expression
1 pmapssat.b 𝐵 = ( Base ‘ 𝐾 )
2 pmapssat.a 𝐴 = ( Atoms ‘ 𝐾 )
3 pmapssat.m 𝑀 = ( pmap ‘ 𝐾 )
4 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
5 1 4 2 3 pmapval ( ( 𝐾𝐶𝑋𝐵 ) → ( 𝑀𝑋 ) = { 𝑝𝐴𝑝 ( le ‘ 𝐾 ) 𝑋 } )
6 ssrab2 { 𝑝𝐴𝑝 ( le ‘ 𝐾 ) 𝑋 } ⊆ 𝐴
7 5 6 eqsstrdi ( ( 𝐾𝐶𝑋𝐵 ) → ( 𝑀𝑋 ) ⊆ 𝐴 )