Description: A weakening of pmapssat to shorten some proofs. (Contributed by NM, 7-Mar-2012) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pmapssba.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
pmapssba.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | ||
Assertion | pmapssbaN | ⊢ ( ( 𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) ⊆ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmapssba.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
2 | pmapssba.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | |
3 | eqid | ⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) | |
4 | 1 3 2 | pmapssat | ⊢ ( ( 𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) ⊆ ( Atoms ‘ 𝐾 ) ) |
5 | 1 3 | atssbase | ⊢ ( Atoms ‘ 𝐾 ) ⊆ 𝐵 |
6 | 4 5 | sstrdi | ⊢ ( ( 𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) ⊆ 𝐵 ) |