Metamath Proof Explorer


Theorem pmapssbaN

Description: A weakening of pmapssat to shorten some proofs. (Contributed by NM, 7-Mar-2012) (New usage is discouraged.)

Ref Expression
Hypotheses pmapssba.b 𝐵 = ( Base ‘ 𝐾 )
pmapssba.m 𝑀 = ( pmap ‘ 𝐾 )
Assertion pmapssbaN ( ( 𝐾𝐶𝑋𝐵 ) → ( 𝑀𝑋 ) ⊆ 𝐵 )

Proof

Step Hyp Ref Expression
1 pmapssba.b 𝐵 = ( Base ‘ 𝐾 )
2 pmapssba.m 𝑀 = ( pmap ‘ 𝐾 )
3 eqid ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 )
4 1 3 2 pmapssat ( ( 𝐾𝐶𝑋𝐵 ) → ( 𝑀𝑋 ) ⊆ ( Atoms ‘ 𝐾 ) )
5 1 3 atssbase ( Atoms ‘ 𝐾 ) ⊆ 𝐵
6 4 5 sstrdi ( ( 𝐾𝐶𝑋𝐵 ) → ( 𝑀𝑋 ) ⊆ 𝐵 )