| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmapsubcl.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
pmapsubcl.m |
⊢ 𝑀 = ( pmap ‘ 𝐾 ) |
| 3 |
|
pmapsubcl.c |
⊢ 𝐶 = ( PSubCl ‘ 𝐾 ) |
| 4 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
| 5 |
1 4 2
|
pmapssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) ⊆ ( Atoms ‘ 𝐾 ) ) |
| 6 |
|
eqid |
⊢ ( ⊥𝑃 ‘ 𝐾 ) = ( ⊥𝑃 ‘ 𝐾 ) |
| 7 |
1 2 6
|
2polpmapN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝑋 ) ) ) = ( 𝑀 ‘ 𝑋 ) ) |
| 8 |
4 6 3
|
ispsubclN |
⊢ ( 𝐾 ∈ HL → ( ( 𝑀 ‘ 𝑋 ) ∈ 𝐶 ↔ ( ( 𝑀 ‘ 𝑋 ) ⊆ ( Atoms ‘ 𝐾 ) ∧ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝑋 ) ) ) = ( 𝑀 ‘ 𝑋 ) ) ) ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑋 ) ∈ 𝐶 ↔ ( ( 𝑀 ‘ 𝑋 ) ⊆ ( Atoms ‘ 𝐾 ) ∧ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝑋 ) ) ) = ( 𝑀 ‘ 𝑋 ) ) ) ) |
| 10 |
5 7 9
|
mpbir2and |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) ∈ 𝐶 ) |