Metamath Proof Explorer


Theorem pmat0op

Description: The zero polynomial matrix over a ring represented as operation. (Contributed by AV, 16-Nov-2019)

Ref Expression
Hypotheses pmatring.p 𝑃 = ( Poly1𝑅 )
pmatring.c 𝐶 = ( 𝑁 Mat 𝑃 )
pmat0op.z 0 = ( 0g𝑃 )
Assertion pmat0op ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g𝐶 ) = ( 𝑖𝑁 , 𝑗𝑁0 ) )

Proof

Step Hyp Ref Expression
1 pmatring.p 𝑃 = ( Poly1𝑅 )
2 pmatring.c 𝐶 = ( 𝑁 Mat 𝑃 )
3 pmat0op.z 0 = ( 0g𝑃 )
4 1 ply1ring ( 𝑅 ∈ Ring → 𝑃 ∈ Ring )
5 2 3 mat0op ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) → ( 0g𝐶 ) = ( 𝑖𝑁 , 𝑗𝑁0 ) )
6 4 5 sylan2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g𝐶 ) = ( 𝑖𝑁 , 𝑗𝑁0 ) )