| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmat0opsc.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
pmat0opsc.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
| 3 |
|
pmat0opsc.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
| 4 |
|
pmat0opsc.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 5 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 6 |
1 2 5
|
pmat0op |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g ‘ 𝐶 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 0g ‘ 𝑃 ) ) ) |
| 7 |
1 3 4 5
|
ply1scl0 |
⊢ ( 𝑅 ∈ Ring → ( 𝐴 ‘ 0 ) = ( 0g ‘ 𝑃 ) ) |
| 8 |
7
|
eqcomd |
⊢ ( 𝑅 ∈ Ring → ( 0g ‘ 𝑃 ) = ( 𝐴 ‘ 0 ) ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g ‘ 𝑃 ) = ( 𝐴 ‘ 0 ) ) |
| 10 |
9
|
mpoeq3dv |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 0g ‘ 𝑃 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝐴 ‘ 0 ) ) ) |
| 11 |
6 10
|
eqtrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g ‘ 𝐶 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝐴 ‘ 0 ) ) ) |