Metamath Proof Explorer


Theorem pmat0opsc

Description: The zero polynomial matrix over a ring represented as operation with "lifted scalars" (i.e. elements of the ring underlying the polynomial ring embedded into the polynomial ring by the scalar injection/algebraic scalars function algSc ). (Contributed by AV, 16-Nov-2019)

Ref Expression
Hypotheses pmat0opsc.p 𝑃 = ( Poly1𝑅 )
pmat0opsc.c 𝐶 = ( 𝑁 Mat 𝑃 )
pmat0opsc.a 𝐴 = ( algSc ‘ 𝑃 )
pmat0opsc.z 0 = ( 0g𝑅 )
Assertion pmat0opsc ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g𝐶 ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝐴0 ) ) )

Proof

Step Hyp Ref Expression
1 pmat0opsc.p 𝑃 = ( Poly1𝑅 )
2 pmat0opsc.c 𝐶 = ( 𝑁 Mat 𝑃 )
3 pmat0opsc.a 𝐴 = ( algSc ‘ 𝑃 )
4 pmat0opsc.z 0 = ( 0g𝑅 )
5 eqid ( 0g𝑃 ) = ( 0g𝑃 )
6 1 2 5 pmat0op ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g𝐶 ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 0g𝑃 ) ) )
7 1 3 4 5 ply1scl0 ( 𝑅 ∈ Ring → ( 𝐴0 ) = ( 0g𝑃 ) )
8 7 eqcomd ( 𝑅 ∈ Ring → ( 0g𝑃 ) = ( 𝐴0 ) )
9 8 adantl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g𝑃 ) = ( 𝐴0 ) )
10 9 mpoeq3dv ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 0g𝑃 ) ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝐴0 ) ) )
11 6 10 eqtrd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g𝐶 ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝐴0 ) ) )