Description: The identity polynomial matrix over a ring represented as operation. (Contributed by AV, 16-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pmatring.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
pmatring.c | ⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) | ||
pmat0op.z | ⊢ 0 = ( 0g ‘ 𝑃 ) | ||
pmat1op.o | ⊢ 1 = ( 1r ‘ 𝑃 ) | ||
Assertion | pmat1op | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐶 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmatring.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
2 | pmatring.c | ⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) | |
3 | pmat0op.z | ⊢ 0 = ( 0g ‘ 𝑃 ) | |
4 | pmat1op.o | ⊢ 1 = ( 1r ‘ 𝑃 ) | |
5 | 1 | ply1ring | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
6 | 2 4 3 | mat1 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) → ( 1r ‘ 𝐶 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) |
7 | 5 6 | sylan2 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐶 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) |