Metamath Proof Explorer


Theorem pmat1op

Description: The identity polynomial matrix over a ring represented as operation. (Contributed by AV, 16-Nov-2019)

Ref Expression
Hypotheses pmatring.p 𝑃 = ( Poly1𝑅 )
pmatring.c 𝐶 = ( 𝑁 Mat 𝑃 )
pmat0op.z 0 = ( 0g𝑃 )
pmat1op.o 1 = ( 1r𝑃 )
Assertion pmat1op ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r𝐶 ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) )

Proof

Step Hyp Ref Expression
1 pmatring.p 𝑃 = ( Poly1𝑅 )
2 pmatring.c 𝐶 = ( 𝑁 Mat 𝑃 )
3 pmat0op.z 0 = ( 0g𝑃 )
4 pmat1op.o 1 = ( 1r𝑃 )
5 1 ply1ring ( 𝑅 ∈ Ring → 𝑃 ∈ Ring )
6 2 4 3 mat1 ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) → ( 1r𝐶 ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) )
7 5 6 sylan2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r𝐶 ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) )