Step |
Hyp |
Ref |
Expression |
1 |
|
pmat0opsc.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
pmat0opsc.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
3 |
|
pmat0opsc.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
4 |
|
pmat0opsc.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
pmat1opsc.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
7 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
8 |
1 2 6 7
|
pmat1op |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐶 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑃 ) , ( 0g ‘ 𝑃 ) ) ) ) |
9 |
1 3 5 7
|
ply1scl1 |
⊢ ( 𝑅 ∈ Ring → ( 𝐴 ‘ 1 ) = ( 1r ‘ 𝑃 ) ) |
10 |
9
|
eqcomd |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑃 ) = ( 𝐴 ‘ 1 ) ) |
11 |
1 3 4 6
|
ply1scl0 |
⊢ ( 𝑅 ∈ Ring → ( 𝐴 ‘ 0 ) = ( 0g ‘ 𝑃 ) ) |
12 |
11
|
eqcomd |
⊢ ( 𝑅 ∈ Ring → ( 0g ‘ 𝑃 ) = ( 𝐴 ‘ 0 ) ) |
13 |
10 12
|
ifeq12d |
⊢ ( 𝑅 ∈ Ring → if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑃 ) , ( 0g ‘ 𝑃 ) ) = if ( 𝑖 = 𝑗 , ( 𝐴 ‘ 1 ) , ( 𝐴 ‘ 0 ) ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑃 ) , ( 0g ‘ 𝑃 ) ) = if ( 𝑖 = 𝑗 , ( 𝐴 ‘ 1 ) , ( 𝐴 ‘ 0 ) ) ) |
15 |
14
|
mpoeq3dv |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑃 ) , ( 0g ‘ 𝑃 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 𝐴 ‘ 1 ) , ( 𝐴 ‘ 0 ) ) ) ) |
16 |
8 15
|
eqtrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐶 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 𝐴 ‘ 1 ) , ( 𝐴 ‘ 0 ) ) ) ) |