Metamath Proof Explorer


Theorem pmat1opsc

Description: The identity polynomial matrix over a ring represented as operation with "lifted scalars". (Contributed by AV, 16-Nov-2019)

Ref Expression
Hypotheses pmat0opsc.p 𝑃 = ( Poly1𝑅 )
pmat0opsc.c 𝐶 = ( 𝑁 Mat 𝑃 )
pmat0opsc.a 𝐴 = ( algSc ‘ 𝑃 )
pmat0opsc.z 0 = ( 0g𝑅 )
pmat1opsc.o 1 = ( 1r𝑅 )
Assertion pmat1opsc ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r𝐶 ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝑗 , ( 𝐴1 ) , ( 𝐴0 ) ) ) )

Proof

Step Hyp Ref Expression
1 pmat0opsc.p 𝑃 = ( Poly1𝑅 )
2 pmat0opsc.c 𝐶 = ( 𝑁 Mat 𝑃 )
3 pmat0opsc.a 𝐴 = ( algSc ‘ 𝑃 )
4 pmat0opsc.z 0 = ( 0g𝑅 )
5 pmat1opsc.o 1 = ( 1r𝑅 )
6 eqid ( 0g𝑃 ) = ( 0g𝑃 )
7 eqid ( 1r𝑃 ) = ( 1r𝑃 )
8 1 2 6 7 pmat1op ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r𝐶 ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r𝑃 ) , ( 0g𝑃 ) ) ) )
9 1 3 5 7 ply1scl1 ( 𝑅 ∈ Ring → ( 𝐴1 ) = ( 1r𝑃 ) )
10 9 eqcomd ( 𝑅 ∈ Ring → ( 1r𝑃 ) = ( 𝐴1 ) )
11 1 3 4 6 ply1scl0 ( 𝑅 ∈ Ring → ( 𝐴0 ) = ( 0g𝑃 ) )
12 11 eqcomd ( 𝑅 ∈ Ring → ( 0g𝑃 ) = ( 𝐴0 ) )
13 10 12 ifeq12d ( 𝑅 ∈ Ring → if ( 𝑖 = 𝑗 , ( 1r𝑃 ) , ( 0g𝑃 ) ) = if ( 𝑖 = 𝑗 , ( 𝐴1 ) , ( 𝐴0 ) ) )
14 13 adantl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → if ( 𝑖 = 𝑗 , ( 1r𝑃 ) , ( 0g𝑃 ) ) = if ( 𝑖 = 𝑗 , ( 𝐴1 ) , ( 𝐴0 ) ) )
15 14 mpoeq3dv ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r𝑃 ) , ( 0g𝑃 ) ) ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝑗 , ( 𝐴1 ) , ( 𝐴0 ) ) ) )
16 8 15 eqtrd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r𝐶 ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝑗 , ( 𝐴1 ) , ( 𝐴0 ) ) ) )