Metamath Proof Explorer


Theorem pmat1ovscd

Description: Entries of the identity polynomial matrix over a ring represented with "lifted scalars", deduction form. (Contributed by AV, 16-Nov-2019)

Ref Expression
Hypotheses pmat0opsc.p 𝑃 = ( Poly1𝑅 )
pmat0opsc.c 𝐶 = ( 𝑁 Mat 𝑃 )
pmat0opsc.a 𝐴 = ( algSc ‘ 𝑃 )
pmat0opsc.z 0 = ( 0g𝑅 )
pmat1opsc.o 1 = ( 1r𝑅 )
pmat1ovscd.n ( 𝜑𝑁 ∈ Fin )
pmat1ovscd.r ( 𝜑𝑅 ∈ Ring )
pmat1ovscd.i ( 𝜑𝐼𝑁 )
pmat1ovscd.j ( 𝜑𝐽𝑁 )
pmat1ovscd.u 𝑈 = ( 1r𝐶 )
Assertion pmat1ovscd ( 𝜑 → ( 𝐼 𝑈 𝐽 ) = if ( 𝐼 = 𝐽 , ( 𝐴1 ) , ( 𝐴0 ) ) )

Proof

Step Hyp Ref Expression
1 pmat0opsc.p 𝑃 = ( Poly1𝑅 )
2 pmat0opsc.c 𝐶 = ( 𝑁 Mat 𝑃 )
3 pmat0opsc.a 𝐴 = ( algSc ‘ 𝑃 )
4 pmat0opsc.z 0 = ( 0g𝑅 )
5 pmat1opsc.o 1 = ( 1r𝑅 )
6 pmat1ovscd.n ( 𝜑𝑁 ∈ Fin )
7 pmat1ovscd.r ( 𝜑𝑅 ∈ Ring )
8 pmat1ovscd.i ( 𝜑𝐼𝑁 )
9 pmat1ovscd.j ( 𝜑𝐽𝑁 )
10 pmat1ovscd.u 𝑈 = ( 1r𝐶 )
11 eqid ( 0g𝑃 ) = ( 0g𝑃 )
12 eqid ( 1r𝑃 ) = ( 1r𝑃 )
13 1 2 11 12 6 7 8 9 10 pmat1ovd ( 𝜑 → ( 𝐼 𝑈 𝐽 ) = if ( 𝐼 = 𝐽 , ( 1r𝑃 ) , ( 0g𝑃 ) ) )
14 1 3 5 12 ply1scl1 ( 𝑅 ∈ Ring → ( 𝐴1 ) = ( 1r𝑃 ) )
15 7 14 syl ( 𝜑 → ( 𝐴1 ) = ( 1r𝑃 ) )
16 15 eqcomd ( 𝜑 → ( 1r𝑃 ) = ( 𝐴1 ) )
17 1 3 4 11 ply1scl0 ( 𝑅 ∈ Ring → ( 𝐴0 ) = ( 0g𝑃 ) )
18 7 17 syl ( 𝜑 → ( 𝐴0 ) = ( 0g𝑃 ) )
19 18 eqcomd ( 𝜑 → ( 0g𝑃 ) = ( 𝐴0 ) )
20 16 19 ifeq12d ( 𝜑 → if ( 𝐼 = 𝐽 , ( 1r𝑃 ) , ( 0g𝑃 ) ) = if ( 𝐼 = 𝐽 , ( 𝐴1 ) , ( 𝐴0 ) ) )
21 13 20 eqtrd ( 𝜑 → ( 𝐼 𝑈 𝐽 ) = if ( 𝐼 = 𝐽 , ( 𝐴1 ) , ( 𝐴0 ) ) )