Metamath Proof Explorer


Theorem pmatassa

Description: The set of polynomial matrices over a commutative ring is an associative algebra. (Contributed by AV, 16-Jun-2024)

Ref Expression
Hypotheses pmatring.p 𝑃 = ( Poly1𝑅 )
pmatring.c 𝐶 = ( 𝑁 Mat 𝑃 )
Assertion pmatassa ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐶 ∈ AssAlg )

Proof

Step Hyp Ref Expression
1 pmatring.p 𝑃 = ( Poly1𝑅 )
2 pmatring.c 𝐶 = ( 𝑁 Mat 𝑃 )
3 1 ply1crng ( 𝑅 ∈ CRing → 𝑃 ∈ CRing )
4 2 matassa ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) → 𝐶 ∈ AssAlg )
5 3 4 sylan2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐶 ∈ AssAlg )