Metamath Proof Explorer
Description: The set of polynomial matrices over a commutative ring is an associative
algebra. (Contributed by AV, 16-Jun-2024)
|
|
Ref |
Expression |
|
Hypotheses |
pmatring.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
|
|
pmatring.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
|
Assertion |
pmatassa |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐶 ∈ AssAlg ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
pmatring.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
pmatring.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
3 |
1
|
ply1crng |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ CRing ) |
4 |
2
|
matassa |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) → 𝐶 ∈ AssAlg ) |
5 |
3 4
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐶 ∈ AssAlg ) |