| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pmatcoe1fsupp.p | 
							⊢ 𝑃  =  ( Poly1 ‘ 𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							pmatcoe1fsupp.c | 
							⊢ 𝐶  =  ( 𝑁  Mat  𝑃 )  | 
						
						
							| 3 | 
							
								
							 | 
							pmatcoe1fsupp.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐶 )  | 
						
						
							| 4 | 
							
								
							 | 
							pmatcoe1fsupp.0 | 
							⊢  0   =  ( 0g ‘ 𝑅 )  | 
						
						
							| 5 | 
							
								
							 | 
							ssrab2 | 
							⊢ { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  }  ⊆  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  | 
						
						
							| 6 | 
							
								5
							 | 
							a1i | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  }  ⊆  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							olcd | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ⊆  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∨  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  }  ⊆  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							inss | 
							⊢ ( ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ⊆  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∨  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  }  ⊆  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 ) )  →  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } )  ⊆  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							syl | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } )  ⊆  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							xpfi | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑁  ∈  Fin )  →  ( 𝑁  ×  𝑁 )  ∈  Fin )  | 
						
						
							| 11 | 
							
								10
							 | 
							anidms | 
							⊢ ( 𝑁  ∈  Fin  →  ( 𝑁  ×  𝑁 )  ∈  Fin )  | 
						
						
							| 12 | 
							
								
							 | 
							snfi | 
							⊢ { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∈  Fin  | 
						
						
							| 13 | 
							
								12
							 | 
							a1i | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑢  ∈  ( 𝑁  ×  𝑁 ) )  →  { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∈  Fin )  | 
						
						
							| 14 | 
							
								13
							 | 
							ralrimiva | 
							⊢ ( 𝑁  ∈  Fin  →  ∀ 𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∈  Fin )  | 
						
						
							| 15 | 
							
								11 14
							 | 
							jca | 
							⊢ ( 𝑁  ∈  Fin  →  ( ( 𝑁  ×  𝑁 )  ∈  Fin  ∧  ∀ 𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∈  Fin ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ( 𝑁  ×  𝑁 )  ∈  Fin  ∧  ∀ 𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∈  Fin ) )  | 
						
						
							| 17 | 
							
								
							 | 
							iunfi | 
							⊢ ( ( ( 𝑁  ×  𝑁 )  ∈  Fin  ∧  ∀ 𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∈  Fin )  →  ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∈  Fin )  | 
						
						
							| 18 | 
							
								
							 | 
							infi | 
							⊢ ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∈  Fin  →  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } )  ∈  Fin )  | 
						
						
							| 19 | 
							
								16 17 18
							 | 
							3syl | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } )  ∈  Fin )  | 
						
						
							| 20 | 
							
								
							 | 
							fvex | 
							⊢ ( 0g ‘ 𝑅 )  ∈  V  | 
						
						
							| 21 | 
							
								4 20
							 | 
							eqeltri | 
							⊢  0   ∈  V  | 
						
						
							| 22 | 
							
								21
							 | 
							a1i | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →   0   ∈  V )  | 
						
						
							| 23 | 
							
								
							 | 
							elin | 
							⊢ ( 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } )  ↔  ( 𝑤  ∈  ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∧  𝑤  ∈  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) )  | 
						
						
							| 24 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑣  =  𝑤  →  ( 𝑣  finSupp   0   ↔  𝑤  finSupp   0  ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							elrab | 
							⊢ ( 𝑤  ∈  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  }  ↔  ( 𝑤  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∧  𝑤  finSupp   0  ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							simprbi | 
							⊢ ( 𝑤  ∈  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  }  →  𝑤  finSupp   0  )  | 
						
						
							| 27 | 
							
								23 26
							 | 
							simplbiim | 
							⊢ ( 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } )  →  𝑤  finSupp   0  )  | 
						
						
							| 28 | 
							
								27
							 | 
							rgen | 
							⊢ ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) 𝑤  finSupp   0   | 
						
						
							| 29 | 
							
								28
							 | 
							a1i | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) 𝑤  finSupp   0  )  | 
						
						
							| 30 | 
							
								
							 | 
							fsuppmapnn0fiub0 | 
							⊢ ( ( ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } )  ⊆  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∧  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } )  ∈  Fin  ∧   0   ∈  V )  →  ( ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) 𝑤  finSupp   0   →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) ∀ 𝑧  ∈  ℕ0 ( 𝑠  <  𝑧  →  ( 𝑤 ‘ 𝑧 )  =   0  ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							imp | 
							⊢ ( ( ( ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } )  ⊆  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∧  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } )  ∈  Fin  ∧   0   ∈  V )  ∧  ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) 𝑤  finSupp   0  )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) ∀ 𝑧  ∈  ℕ0 ( 𝑠  <  𝑧  →  ( 𝑤 ‘ 𝑧 )  =   0  ) )  | 
						
						
							| 32 | 
							
								9 19 22 29 31
							 | 
							syl31anc | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) ∀ 𝑧  ∈  ℕ0 ( 𝑠  <  𝑧  →  ( 𝑤 ‘ 𝑧 )  =   0  ) )  | 
						
						
							| 33 | 
							
								
							 | 
							opelxpi | 
							⊢ ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  〈 𝑖 ,  𝑗 〉  ∈  ( 𝑁  ×  𝑁 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							df-ov | 
							⊢ ( 𝑖 𝑀 𝑗 )  =  ( 𝑀 ‘ 〈 𝑖 ,  𝑗 〉 )  | 
						
						
							| 35 | 
							
								34
							 | 
							fveq2i | 
							⊢ ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  =  ( coe1 ‘ ( 𝑀 ‘ 〈 𝑖 ,  𝑗 〉 ) )  | 
						
						
							| 36 | 
							
								
							 | 
							fvex | 
							⊢ ( coe1 ‘ ( 𝑀 ‘ 〈 𝑖 ,  𝑗 〉 ) )  ∈  V  | 
						
						
							| 37 | 
							
								36
							 | 
							snid | 
							⊢ ( coe1 ‘ ( 𝑀 ‘ 〈 𝑖 ,  𝑗 〉 ) )  ∈  { ( coe1 ‘ ( 𝑀 ‘ 〈 𝑖 ,  𝑗 〉 ) ) }  | 
						
						
							| 38 | 
							
								35 37
							 | 
							eqeltri | 
							⊢ ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  ∈  { ( coe1 ‘ ( 𝑀 ‘ 〈 𝑖 ,  𝑗 〉 ) ) }  | 
						
						
							| 39 | 
							
								38
							 | 
							a1i | 
							⊢ ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  ∈  { ( coe1 ‘ ( 𝑀 ‘ 〈 𝑖 ,  𝑗 〉 ) ) } )  | 
						
						
							| 40 | 
							
								
							 | 
							2fveq3 | 
							⊢ ( 𝑢  =  〈 𝑖 ,  𝑗 〉  →  ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) )  =  ( coe1 ‘ ( 𝑀 ‘ 〈 𝑖 ,  𝑗 〉 ) ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							sneqd | 
							⊢ ( 𝑢  =  〈 𝑖 ,  𝑗 〉  →  { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  =  { ( coe1 ‘ ( 𝑀 ‘ 〈 𝑖 ,  𝑗 〉 ) ) } )  | 
						
						
							| 42 | 
							
								41
							 | 
							eliuni | 
							⊢ ( ( 〈 𝑖 ,  𝑗 〉  ∈  ( 𝑁  ×  𝑁 )  ∧  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  ∈  { ( coe1 ‘ ( 𝑀 ‘ 〈 𝑖 ,  𝑗 〉 ) ) } )  →  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  ∈  ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } )  | 
						
						
							| 43 | 
							
								33 39 42
							 | 
							syl2anc | 
							⊢ ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  ∈  ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } )  | 
						
						
							| 44 | 
							
								43
							 | 
							adantl | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  ∈  ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } )  | 
						
						
							| 45 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 )  | 
						
						
							| 46 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑖  ∈  𝑁 )  | 
						
						
							| 47 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑗  ∈  𝑁 )  | 
						
						
							| 48 | 
							
								3
							 | 
							eleq2i | 
							⊢ ( 𝑀  ∈  𝐵  ↔  𝑀  ∈  ( Base ‘ 𝐶 ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							biimpi | 
							⊢ ( 𝑀  ∈  𝐵  →  𝑀  ∈  ( Base ‘ 𝐶 ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑀  ∈  ( Base ‘ 𝐶 ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑀  ∈  ( Base ‘ 𝐶 ) )  | 
						
						
							| 52 | 
							
								51 3
							 | 
							eleqtrrdi | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑀  ∈  𝐵 )  | 
						
						
							| 53 | 
							
								2 45 3 46 47 52
							 | 
							matecld | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖 𝑀 𝑗 )  ∈  ( Base ‘ 𝑃 ) )  | 
						
						
							| 54 | 
							
								
							 | 
							eqid | 
							⊢ ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  =  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  | 
						
						
							| 55 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 )  | 
						
						
							| 56 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 )  | 
						
						
							| 57 | 
							
								54 45 1 55 56
							 | 
							coe1fsupp | 
							⊢ ( ( 𝑖 𝑀 𝑗 )  ∈  ( Base ‘ 𝑃 )  →  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  ∈  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp  ( 0g ‘ 𝑅 ) } )  | 
						
						
							| 58 | 
							
								53 57
							 | 
							syl | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  ∈  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp  ( 0g ‘ 𝑅 ) } )  | 
						
						
							| 59 | 
							
								4
							 | 
							a1i | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →   0   =  ( 0g ‘ 𝑅 ) )  | 
						
						
							| 60 | 
							
								59
							 | 
							breq2d | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑣  finSupp   0   ↔  𝑣  finSupp  ( 0g ‘ 𝑅 ) ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							rabbidv | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  }  =  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp  ( 0g ‘ 𝑅 ) } )  | 
						
						
							| 62 | 
							
								61
							 | 
							eleq2d | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  ∈  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  }  ↔  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  ∈  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp  ( 0g ‘ 𝑅 ) } ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  ∈  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  }  ↔  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  ∈  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp  ( 0g ‘ 𝑅 ) } ) )  | 
						
						
							| 64 | 
							
								58 63
							 | 
							mpbird | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  ∈  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } )  | 
						
						
							| 65 | 
							
								44 64
							 | 
							elind | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) )  | 
						
						
							| 66 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑥  ∈  ℕ0 )  | 
						
						
							| 67 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝑤  =  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  →  ( 𝑤 ‘ 𝑧 )  =  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑧 ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							eqeq1d | 
							⊢ ( 𝑤  =  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  →  ( ( 𝑤 ‘ 𝑧 )  =   0   ↔  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑧 )  =   0  ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							imbi2d | 
							⊢ ( 𝑤  =  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  →  ( ( 𝑠  <  𝑧  →  ( 𝑤 ‘ 𝑧 )  =   0  )  ↔  ( 𝑠  <  𝑧  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑧 )  =   0  ) ) )  | 
						
						
							| 70 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑧  =  𝑥  →  ( 𝑠  <  𝑧  ↔  𝑠  <  𝑥 ) )  | 
						
						
							| 71 | 
							
								
							 | 
							fveqeq2 | 
							⊢ ( 𝑧  =  𝑥  →  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑧 )  =   0   ↔  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =   0  ) )  | 
						
						
							| 72 | 
							
								70 71
							 | 
							imbi12d | 
							⊢ ( 𝑧  =  𝑥  →  ( ( 𝑠  <  𝑧  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑧 )  =   0  )  ↔  ( 𝑠  <  𝑥  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =   0  ) ) )  | 
						
						
							| 73 | 
							
								69 72
							 | 
							rspc2v | 
							⊢ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } )  ∧  𝑥  ∈  ℕ0 )  →  ( ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) ∀ 𝑧  ∈  ℕ0 ( 𝑠  <  𝑧  →  ( 𝑤 ‘ 𝑧 )  =   0  )  →  ( 𝑠  <  𝑥  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =   0  ) ) )  | 
						
						
							| 74 | 
							
								65 66 73
							 | 
							syl2anc | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) ∀ 𝑧  ∈  ℕ0 ( 𝑠  <  𝑧  →  ( 𝑤 ‘ 𝑧 )  =   0  )  →  ( 𝑠  <  𝑥  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =   0  ) ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							ex | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  →  ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) ∀ 𝑧  ∈  ℕ0 ( 𝑠  <  𝑧  →  ( 𝑤 ‘ 𝑧 )  =   0  )  →  ( 𝑠  <  𝑥  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =   0  ) ) ) )  | 
						
						
							| 76 | 
							
								75
							 | 
							com23 | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  →  ( ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) ∀ 𝑧  ∈  ℕ0 ( 𝑠  <  𝑧  →  ( 𝑤 ‘ 𝑧 )  =   0  )  →  ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑠  <  𝑥  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =   0  ) ) ) )  | 
						
						
							| 77 | 
							
								76
							 | 
							impancom | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) ∀ 𝑧  ∈  ℕ0 ( 𝑠  <  𝑧  →  ( 𝑤 ‘ 𝑧 )  =   0  ) )  →  ( 𝑥  ∈  ℕ0  →  ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑠  <  𝑥  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =   0  ) ) ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							imp | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) ∀ 𝑧  ∈  ℕ0 ( 𝑠  <  𝑧  →  ( 𝑤 ‘ 𝑧 )  =   0  ) )  ∧  𝑥  ∈  ℕ0 )  →  ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑠  <  𝑥  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =   0  ) ) )  | 
						
						
							| 79 | 
							
								78
							 | 
							com23 | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) ∀ 𝑧  ∈  ℕ0 ( 𝑠  <  𝑧  →  ( 𝑤 ‘ 𝑧 )  =   0  ) )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑠  <  𝑥  →  ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =   0  ) ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							ralrimdvv | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) ∀ 𝑧  ∈  ℕ0 ( 𝑠  <  𝑧  →  ( 𝑤 ‘ 𝑧 )  =   0  ) )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑠  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =   0  ) )  | 
						
						
							| 81 | 
							
								80
							 | 
							ralrimiva | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) ∀ 𝑧  ∈  ℕ0 ( 𝑠  <  𝑧  →  ( 𝑤 ‘ 𝑧 )  =   0  ) )  →  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =   0  ) )  | 
						
						
							| 82 | 
							
								81
							 | 
							ex | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  →  ( ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) ∀ 𝑧  ∈  ℕ0 ( 𝑠  <  𝑧  →  ( 𝑤 ‘ 𝑧 )  =   0  )  →  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =   0  ) ) )  | 
						
						
							| 83 | 
							
								82
							 | 
							reximdva | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ∃ 𝑠  ∈  ℕ0 ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) ∀ 𝑧  ∈  ℕ0 ( 𝑠  <  𝑧  →  ( 𝑤 ‘ 𝑧 )  =   0  )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =   0  ) ) )  | 
						
						
							| 84 | 
							
								32 83
							 | 
							mpd | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =   0  ) )  |