Step |
Hyp |
Ref |
Expression |
1 |
|
pmatcoe1fsupp.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
pmatcoe1fsupp.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
3 |
|
pmatcoe1fsupp.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
4 |
|
pmatcoe1fsupp.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
ssrab2 |
⊢ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ⊆ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) |
6 |
5
|
a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ⊆ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ) |
7 |
6
|
olcd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ⊆ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∨ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ⊆ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ) ) |
8 |
|
inss |
⊢ ( ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ⊆ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∨ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ⊆ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ) → ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∩ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ) ⊆ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ) |
9 |
7 8
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∩ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ) ⊆ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ) |
10 |
|
xpfi |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑁 × 𝑁 ) ∈ Fin ) |
11 |
10
|
anidms |
⊢ ( 𝑁 ∈ Fin → ( 𝑁 × 𝑁 ) ∈ Fin ) |
12 |
|
snfi |
⊢ { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∈ Fin |
13 |
12
|
a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑢 ∈ ( 𝑁 × 𝑁 ) ) → { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∈ Fin ) |
14 |
13
|
ralrimiva |
⊢ ( 𝑁 ∈ Fin → ∀ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∈ Fin ) |
15 |
11 14
|
jca |
⊢ ( 𝑁 ∈ Fin → ( ( 𝑁 × 𝑁 ) ∈ Fin ∧ ∀ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∈ Fin ) ) |
16 |
15
|
3ad2ant1 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ( 𝑁 × 𝑁 ) ∈ Fin ∧ ∀ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∈ Fin ) ) |
17 |
|
iunfi |
⊢ ( ( ( 𝑁 × 𝑁 ) ∈ Fin ∧ ∀ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∈ Fin ) → ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∈ Fin ) |
18 |
|
infi |
⊢ ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∈ Fin → ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∩ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ) ∈ Fin ) |
19 |
16 17 18
|
3syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∩ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ) ∈ Fin ) |
20 |
|
fvex |
⊢ ( 0g ‘ 𝑅 ) ∈ V |
21 |
4 20
|
eqeltri |
⊢ 0 ∈ V |
22 |
21
|
a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 0 ∈ V ) |
23 |
|
elin |
⊢ ( 𝑤 ∈ ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∩ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ) ↔ ( 𝑤 ∈ ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∧ 𝑤 ∈ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ) ) |
24 |
|
breq1 |
⊢ ( 𝑣 = 𝑤 → ( 𝑣 finSupp 0 ↔ 𝑤 finSupp 0 ) ) |
25 |
24
|
elrab |
⊢ ( 𝑤 ∈ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ↔ ( 𝑤 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∧ 𝑤 finSupp 0 ) ) |
26 |
25
|
simprbi |
⊢ ( 𝑤 ∈ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } → 𝑤 finSupp 0 ) |
27 |
23 26
|
simplbiim |
⊢ ( 𝑤 ∈ ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∩ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ) → 𝑤 finSupp 0 ) |
28 |
27
|
rgen |
⊢ ∀ 𝑤 ∈ ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∩ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ) 𝑤 finSupp 0 |
29 |
28
|
a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ∀ 𝑤 ∈ ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∩ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ) 𝑤 finSupp 0 ) |
30 |
|
fsuppmapnn0fiub0 |
⊢ ( ( ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∩ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ) ⊆ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∧ ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∩ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ) ∈ Fin ∧ 0 ∈ V ) → ( ∀ 𝑤 ∈ ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∩ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ) 𝑤 finSupp 0 → ∃ 𝑠 ∈ ℕ0 ∀ 𝑤 ∈ ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∩ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ) ∀ 𝑧 ∈ ℕ0 ( 𝑠 < 𝑧 → ( 𝑤 ‘ 𝑧 ) = 0 ) ) ) |
31 |
30
|
imp |
⊢ ( ( ( ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∩ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ) ⊆ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∧ ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∩ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ) ∈ Fin ∧ 0 ∈ V ) ∧ ∀ 𝑤 ∈ ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∩ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ) 𝑤 finSupp 0 ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑤 ∈ ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∩ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ) ∀ 𝑧 ∈ ℕ0 ( 𝑠 < 𝑧 → ( 𝑤 ‘ 𝑧 ) = 0 ) ) |
32 |
9 19 22 29 31
|
syl31anc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑤 ∈ ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∩ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ) ∀ 𝑧 ∈ ℕ0 ( 𝑠 < 𝑧 → ( 𝑤 ‘ 𝑧 ) = 0 ) ) |
33 |
|
opelxpi |
⊢ ( ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 〈 𝑖 , 𝑗 〉 ∈ ( 𝑁 × 𝑁 ) ) |
34 |
|
df-ov |
⊢ ( 𝑖 𝑀 𝑗 ) = ( 𝑀 ‘ 〈 𝑖 , 𝑗 〉 ) |
35 |
34
|
fveq2i |
⊢ ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) = ( coe1 ‘ ( 𝑀 ‘ 〈 𝑖 , 𝑗 〉 ) ) |
36 |
|
fvex |
⊢ ( coe1 ‘ ( 𝑀 ‘ 〈 𝑖 , 𝑗 〉 ) ) ∈ V |
37 |
36
|
snid |
⊢ ( coe1 ‘ ( 𝑀 ‘ 〈 𝑖 , 𝑗 〉 ) ) ∈ { ( coe1 ‘ ( 𝑀 ‘ 〈 𝑖 , 𝑗 〉 ) ) } |
38 |
35 37
|
eqeltri |
⊢ ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ∈ { ( coe1 ‘ ( 𝑀 ‘ 〈 𝑖 , 𝑗 〉 ) ) } |
39 |
38
|
a1i |
⊢ ( ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ∈ { ( coe1 ‘ ( 𝑀 ‘ 〈 𝑖 , 𝑗 〉 ) ) } ) |
40 |
|
2fveq3 |
⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) = ( coe1 ‘ ( 𝑀 ‘ 〈 𝑖 , 𝑗 〉 ) ) ) |
41 |
40
|
sneqd |
⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } = { ( coe1 ‘ ( 𝑀 ‘ 〈 𝑖 , 𝑗 〉 ) ) } ) |
42 |
41
|
eliuni |
⊢ ( ( 〈 𝑖 , 𝑗 〉 ∈ ( 𝑁 × 𝑁 ) ∧ ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ∈ { ( coe1 ‘ ( 𝑀 ‘ 〈 𝑖 , 𝑗 〉 ) ) } ) → ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ∈ ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ) |
43 |
33 39 42
|
syl2anc |
⊢ ( ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ∈ ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ) |
44 |
43
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ∈ ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ) |
45 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
46 |
|
simprl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑖 ∈ 𝑁 ) |
47 |
|
simprr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑗 ∈ 𝑁 ) |
48 |
3
|
eleq2i |
⊢ ( 𝑀 ∈ 𝐵 ↔ 𝑀 ∈ ( Base ‘ 𝐶 ) ) |
49 |
48
|
biimpi |
⊢ ( 𝑀 ∈ 𝐵 → 𝑀 ∈ ( Base ‘ 𝐶 ) ) |
50 |
49
|
3ad2ant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑀 ∈ ( Base ‘ 𝐶 ) ) |
51 |
50
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑀 ∈ ( Base ‘ 𝐶 ) ) |
52 |
51 3
|
eleqtrrdi |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑀 ∈ 𝐵 ) |
53 |
2 45 3 46 47 52
|
matecld |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 𝑀 𝑗 ) ∈ ( Base ‘ 𝑃 ) ) |
54 |
|
eqid |
⊢ ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) = ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) |
55 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
56 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
57 |
54 45 1 55 56
|
coe1fsupp |
⊢ ( ( 𝑖 𝑀 𝑗 ) ∈ ( Base ‘ 𝑃 ) → ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ∈ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp ( 0g ‘ 𝑅 ) } ) |
58 |
53 57
|
syl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ∈ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp ( 0g ‘ 𝑅 ) } ) |
59 |
4
|
a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 0 = ( 0g ‘ 𝑅 ) ) |
60 |
59
|
breq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑣 finSupp 0 ↔ 𝑣 finSupp ( 0g ‘ 𝑅 ) ) ) |
61 |
60
|
rabbidv |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } = { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp ( 0g ‘ 𝑅 ) } ) |
62 |
61
|
eleq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ∈ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ↔ ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ∈ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp ( 0g ‘ 𝑅 ) } ) ) |
63 |
62
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ∈ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ↔ ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ∈ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp ( 0g ‘ 𝑅 ) } ) ) |
64 |
58 63
|
mpbird |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ∈ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ) |
65 |
44 64
|
elind |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ∈ ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∩ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ) ) |
66 |
|
simplr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑥 ∈ ℕ0 ) |
67 |
|
fveq1 |
⊢ ( 𝑤 = ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) → ( 𝑤 ‘ 𝑧 ) = ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑧 ) ) |
68 |
67
|
eqeq1d |
⊢ ( 𝑤 = ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) → ( ( 𝑤 ‘ 𝑧 ) = 0 ↔ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑧 ) = 0 ) ) |
69 |
68
|
imbi2d |
⊢ ( 𝑤 = ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) → ( ( 𝑠 < 𝑧 → ( 𝑤 ‘ 𝑧 ) = 0 ) ↔ ( 𝑠 < 𝑧 → ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑧 ) = 0 ) ) ) |
70 |
|
breq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑠 < 𝑧 ↔ 𝑠 < 𝑥 ) ) |
71 |
|
fveqeq2 |
⊢ ( 𝑧 = 𝑥 → ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑧 ) = 0 ↔ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) = 0 ) ) |
72 |
70 71
|
imbi12d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑠 < 𝑧 → ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑧 ) = 0 ) ↔ ( 𝑠 < 𝑥 → ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) = 0 ) ) ) |
73 |
69 72
|
rspc2v |
⊢ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ∈ ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∩ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ) ∧ 𝑥 ∈ ℕ0 ) → ( ∀ 𝑤 ∈ ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∩ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ) ∀ 𝑧 ∈ ℕ0 ( 𝑠 < 𝑧 → ( 𝑤 ‘ 𝑧 ) = 0 ) → ( 𝑠 < 𝑥 → ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) = 0 ) ) ) |
74 |
65 66 73
|
syl2anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( ∀ 𝑤 ∈ ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∩ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ) ∀ 𝑧 ∈ ℕ0 ( 𝑠 < 𝑧 → ( 𝑤 ‘ 𝑧 ) = 0 ) → ( 𝑠 < 𝑥 → ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) = 0 ) ) ) |
75 |
74
|
ex |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ∀ 𝑤 ∈ ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∩ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ) ∀ 𝑧 ∈ ℕ0 ( 𝑠 < 𝑧 → ( 𝑤 ‘ 𝑧 ) = 0 ) → ( 𝑠 < 𝑥 → ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) = 0 ) ) ) ) |
76 |
75
|
com23 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ∀ 𝑤 ∈ ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∩ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ) ∀ 𝑧 ∈ ℕ0 ( 𝑠 < 𝑧 → ( 𝑤 ‘ 𝑧 ) = 0 ) → ( ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑠 < 𝑥 → ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) = 0 ) ) ) ) |
77 |
76
|
impancom |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑤 ∈ ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∩ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ) ∀ 𝑧 ∈ ℕ0 ( 𝑠 < 𝑧 → ( 𝑤 ‘ 𝑧 ) = 0 ) ) → ( 𝑥 ∈ ℕ0 → ( ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑠 < 𝑥 → ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) = 0 ) ) ) ) |
78 |
77
|
imp |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑤 ∈ ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∩ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ) ∀ 𝑧 ∈ ℕ0 ( 𝑠 < 𝑧 → ( 𝑤 ‘ 𝑧 ) = 0 ) ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑠 < 𝑥 → ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) = 0 ) ) ) |
79 |
78
|
com23 |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑤 ∈ ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∩ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ) ∀ 𝑧 ∈ ℕ0 ( 𝑠 < 𝑧 → ( 𝑤 ‘ 𝑧 ) = 0 ) ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑠 < 𝑥 → ( ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) = 0 ) ) ) |
80 |
79
|
ralrimdvv |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑤 ∈ ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∩ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ) ∀ 𝑧 ∈ ℕ0 ( 𝑠 < 𝑧 → ( 𝑤 ‘ 𝑧 ) = 0 ) ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑠 < 𝑥 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) = 0 ) ) |
81 |
80
|
ralrimiva |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑤 ∈ ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∩ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ) ∀ 𝑧 ∈ ℕ0 ( 𝑠 < 𝑧 → ( 𝑤 ‘ 𝑧 ) = 0 ) ) → ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) = 0 ) ) |
82 |
81
|
ex |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) → ( ∀ 𝑤 ∈ ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∩ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ) ∀ 𝑧 ∈ ℕ0 ( 𝑠 < 𝑧 → ( 𝑤 ‘ 𝑧 ) = 0 ) → ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) = 0 ) ) ) |
83 |
82
|
reximdva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ∃ 𝑠 ∈ ℕ0 ∀ 𝑤 ∈ ( ∪ 𝑢 ∈ ( 𝑁 × 𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ∩ { 𝑣 ∈ ( ( Base ‘ 𝑅 ) ↑m ℕ0 ) ∣ 𝑣 finSupp 0 } ) ∀ 𝑧 ∈ ℕ0 ( 𝑠 < 𝑧 → ( 𝑤 ‘ 𝑧 ) = 0 ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) = 0 ) ) ) |
84 |
32 83
|
mpd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) = 0 ) ) |