| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pmatcollpw1.p | 
							⊢ 𝑃  =  ( Poly1 ‘ 𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							pmatcollpw1.c | 
							⊢ 𝐶  =  ( 𝑁  Mat  𝑃 )  | 
						
						
							| 3 | 
							
								
							 | 
							pmatcollpw1.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐶 )  | 
						
						
							| 4 | 
							
								
							 | 
							pmatcollpw1.m | 
							⊢  ×   =  (  ·𝑠  ‘ 𝑃 )  | 
						
						
							| 5 | 
							
								
							 | 
							pmatcollpw1.e | 
							⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							pmatcollpw1.x | 
							⊢ 𝑋  =  ( var1 ‘ 𝑅 )  | 
						
						
							| 7 | 
							
								1 2 3 4 5 6
							 | 
							pmatcollpw1lem2 | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎 𝑀 𝑏 )  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							oveq12 | 
							⊢ ( ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 )  →  ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  =  ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							oveq1d | 
							⊢ ( ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 )  →  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) )  =  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ×  ( 𝑛  ↑  𝑋 ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							mpteq2dv | 
							⊢ ( ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							oveq2d | 
							⊢ ( ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 )  →  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantl | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 ) )  →  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑎  ∈  𝑁 )  | 
						
						
							| 15 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑏  ∈  𝑁 )  | 
						
						
							| 16 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 )  | 
						
						
							| 17 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝑃 )  =  ( 0g ‘ 𝑃 )  | 
						
						
							| 18 | 
							
								1
							 | 
							ply1ring | 
							⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring )  | 
						
						
							| 19 | 
							
								
							 | 
							ringcmn | 
							⊢ ( 𝑃  ∈  Ring  →  𝑃  ∈  CMnd )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							syl | 
							⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  CMnd )  | 
						
						
							| 21 | 
							
								20
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑃  ∈  CMnd )  | 
						
						
							| 22 | 
							
								21
							 | 
							adantr | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑃  ∈  CMnd )  | 
						
						
							| 23 | 
							
								
							 | 
							nn0ex | 
							⊢ ℕ0  ∈  V  | 
						
						
							| 24 | 
							
								23
							 | 
							a1i | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ℕ0  ∈  V )  | 
						
						
							| 25 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑅  ∈  Ring )  | 
						
						
							| 26 | 
							
								25
							 | 
							adantr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑅  ∈  Ring )  | 
						
						
							| 27 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑁  Mat  𝑅 )  =  ( 𝑁  Mat  𝑅 )  | 
						
						
							| 28 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 )  | 
						
						
							| 29 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ ( 𝑁  Mat  𝑅 ) )  =  ( Base ‘ ( 𝑁  Mat  𝑅 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							simplrl | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑎  ∈  𝑁 )  | 
						
						
							| 31 | 
							
								15
							 | 
							adantr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑏  ∈  𝑁 )  | 
						
						
							| 32 | 
							
								
							 | 
							simpl3 | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑀  ∈  𝐵 )  | 
						
						
							| 33 | 
							
								32
							 | 
							adantr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑀  ∈  𝐵 )  | 
						
						
							| 34 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑛  ∈  ℕ0 )  | 
						
						
							| 35 | 
							
								1 2 3 27 29
							 | 
							decpmatcl | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝑛 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) )  | 
						
						
							| 36 | 
							
								26 33 34 35
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝑛 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) )  | 
						
						
							| 37 | 
							
								27 28 29 30 31 36
							 | 
							matecld | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 38 | 
							
								
							 | 
							eqid | 
							⊢ ( mulGrp ‘ 𝑃 )  =  ( mulGrp ‘ 𝑃 )  | 
						
						
							| 39 | 
							
								28 1 6 4 38 5 16
							 | 
							ply1tmcl | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ∈  ( Base ‘ 𝑅 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ×  ( 𝑛  ↑  𝑋 ) )  ∈  ( Base ‘ 𝑃 ) )  | 
						
						
							| 40 | 
							
								26 37 34 39
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ×  ( 𝑛  ↑  𝑋 ) )  ∈  ( Base ‘ 𝑃 ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							fmpttd | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ×  ( 𝑛  ↑  𝑋 ) ) ) : ℕ0 ⟶ ( Base ‘ 𝑃 ) )  | 
						
						
							| 42 | 
							
								1 2 3 4 5 6
							 | 
							pmatcollpw1lem1 | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ×  ( 𝑛  ↑  𝑋 ) ) )  finSupp  ( 0g ‘ 𝑃 ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							3expb | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ×  ( 𝑛  ↑  𝑋 ) ) )  finSupp  ( 0g ‘ 𝑃 ) )  | 
						
						
							| 44 | 
							
								16 17 22 24 41 43
							 | 
							gsumcl | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  ∈  ( Base ‘ 𝑃 ) )  | 
						
						
							| 45 | 
							
								8 13 14 15 44
							 | 
							ovmpod | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ) 𝑏 )  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑎 ( 𝑀  decompPMat  𝑛 ) 𝑏 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) )  | 
						
						
							| 46 | 
							
								7 45
							 | 
							eqtr4d | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎 𝑀 𝑏 )  =  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ) 𝑏 ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							ralrimivva | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( 𝑎 𝑀 𝑏 )  =  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ) 𝑏 ) )  | 
						
						
							| 48 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑀  ∈  𝐵 )  | 
						
						
							| 49 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑁  ∈  Fin )  | 
						
						
							| 50 | 
							
								18
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑃  ∈  Ring )  | 
						
						
							| 51 | 
							
								21
							 | 
							3ad2ant1 | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑃  ∈  CMnd )  | 
						
						
							| 52 | 
							
								23
							 | 
							a1i | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ℕ0  ∈  V )  | 
						
						
							| 53 | 
							
								
							 | 
							simpl12 | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑛  ∈  ℕ0 )  →  𝑅  ∈  Ring )  | 
						
						
							| 54 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑛  ∈  ℕ0 )  →  𝑖  ∈  𝑁 )  | 
						
						
							| 55 | 
							
								
							 | 
							simpl3 | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑛  ∈  ℕ0 )  →  𝑗  ∈  𝑁 )  | 
						
						
							| 56 | 
							
								48
							 | 
							3ad2ant1 | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑀  ∈  𝐵 )  | 
						
						
							| 57 | 
							
								56
							 | 
							adantr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑛  ∈  ℕ0 )  →  𝑀  ∈  𝐵 )  | 
						
						
							| 58 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑛  ∈  ℕ0 )  →  𝑛  ∈  ℕ0 )  | 
						
						
							| 59 | 
							
								53 57 58 35
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝑛 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) )  | 
						
						
							| 60 | 
							
								27 28 29 54 55 59
							 | 
							matecld | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 61 | 
							
								28 1 6 4 38 5 16
							 | 
							ply1tmcl | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ∈  ( Base ‘ 𝑅 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) )  ∈  ( Base ‘ 𝑃 ) )  | 
						
						
							| 62 | 
							
								53 60 58 61
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) )  ∈  ( Base ‘ 𝑃 ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							fmpttd | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) : ℕ0 ⟶ ( Base ‘ 𝑃 ) )  | 
						
						
							| 64 | 
							
								1 2 3 4 5 6
							 | 
							pmatcollpw1lem1 | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) )  finSupp  ( 0g ‘ 𝑃 ) )  | 
						
						
							| 65 | 
							
								16 17 51 52 63 64
							 | 
							gsumcl | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  ∈  ( Base ‘ 𝑃 ) )  | 
						
						
							| 66 | 
							
								2 16 3 49 50 65
							 | 
							matbas2d | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) )  ∈  𝐵 )  | 
						
						
							| 67 | 
							
								2 3
							 | 
							eqmat | 
							⊢ ( ( 𝑀  ∈  𝐵  ∧  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) )  ∈  𝐵 )  →  ( 𝑀  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) )  ↔  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( 𝑎 𝑀 𝑏 )  =  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ) 𝑏 ) ) )  | 
						
						
							| 68 | 
							
								48 66 67
							 | 
							syl2anc | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑀  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) )  ↔  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( 𝑎 𝑀 𝑏 )  =  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ) 𝑏 ) ) )  | 
						
						
							| 69 | 
							
								47 68
							 | 
							mpbird | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑀  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ) )  |