Step |
Hyp |
Ref |
Expression |
1 |
|
pmatcollpw1.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
pmatcollpw1.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
3 |
|
pmatcollpw1.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
4 |
|
pmatcollpw1.m |
⊢ × = ( ·𝑠 ‘ 𝑃 ) |
5 |
|
pmatcollpw1.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
6 |
|
pmatcollpw1.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
7 |
|
simpl2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → 𝑅 ∈ Ring ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
9 |
|
simprl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → 𝑎 ∈ 𝑁 ) |
10 |
|
simprr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → 𝑏 ∈ 𝑁 ) |
11 |
|
simpl3 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → 𝑀 ∈ 𝐵 ) |
12 |
2 8 3 9 10 11
|
matecld |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑎 𝑀 𝑏 ) ∈ ( Base ‘ 𝑃 ) ) |
13 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
14 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
15 |
|
eqid |
⊢ ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) = ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) |
16 |
1 6 8 4 13 14 15
|
ply1coe |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑎 𝑀 𝑏 ) ∈ ( Base ‘ 𝑃 ) ) → ( 𝑎 𝑀 𝑏 ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝑛 ) × ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) ) ) |
17 |
7 12 16
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑎 𝑀 𝑏 ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝑛 ) × ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) ) ) |
18 |
7
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
19 |
11
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → 𝑀 ∈ 𝐵 ) |
20 |
|
simpr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
21 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) |
22 |
21
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) |
23 |
1 2 3
|
decpmate |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) = ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝑛 ) ) |
24 |
18 19 20 22 23
|
syl31anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) = ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝑛 ) ) |
25 |
24
|
eqcomd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝑛 ) = ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ) |
26 |
5
|
eqcomi |
⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ↑ |
27 |
26
|
oveqi |
⊢ ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) = ( 𝑛 ↑ 𝑋 ) |
28 |
27
|
a1i |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) = ( 𝑛 ↑ 𝑋 ) ) |
29 |
25 28
|
oveq12d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝑛 ) × ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) = ( ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) × ( 𝑛 ↑ 𝑋 ) ) ) |
30 |
29
|
mpteq2dva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝑛 ) × ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) |
31 |
30
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝑛 ) × ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) ) |
32 |
17 31
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑎 𝑀 𝑏 ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) × ( 𝑛 ↑ 𝑋 ) ) ) ) ) |