| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pmatcollpw1.p | 
							⊢ 𝑃  =  ( Poly1 ‘ 𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							pmatcollpw1.c | 
							⊢ 𝐶  =  ( 𝑁  Mat  𝑃 )  | 
						
						
							| 3 | 
							
								
							 | 
							pmatcollpw1.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐶 )  | 
						
						
							| 4 | 
							
								
							 | 
							pmatcollpw1.m | 
							⊢  ×   =  (  ·𝑠  ‘ 𝑃 )  | 
						
						
							| 5 | 
							
								
							 | 
							pmatcollpw1.e | 
							⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							pmatcollpw1.x | 
							⊢ 𝑋  =  ( var1 ‘ 𝑅 )  | 
						
						
							| 7 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑁  ∈  Fin )  | 
						
						
							| 8 | 
							
								
							 | 
							mpoexga | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑁  ∈  Fin )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) )  ∈  V )  | 
						
						
							| 9 | 
							
								7 7 8
							 | 
							syl2anc | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) )  ∈  V )  | 
						
						
							| 10 | 
							
								9
							 | 
							ralrimivw | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ∀ 𝑛  ∈  ℕ0 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) )  ∈  V )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							fnmpt | 
							⊢ ( ∀ 𝑛  ∈  ℕ0 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) )  ∈  V  →  ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  Fn  ℕ0 )  | 
						
						
							| 13 | 
							
								10 12
							 | 
							syl | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  Fn  ℕ0 )  | 
						
						
							| 14 | 
							
								
							 | 
							nn0ex | 
							⊢ ℕ0  ∈  V  | 
						
						
							| 15 | 
							
								14
							 | 
							a1i | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ℕ0  ∈  V )  | 
						
						
							| 16 | 
							
								
							 | 
							fvexd | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 0g ‘ 𝐶 )  ∈  V )  | 
						
						
							| 17 | 
							
								
							 | 
							suppvalfn | 
							⊢ ( ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  Fn  ℕ0  ∧  ℕ0  ∈  V  ∧  ( 0g ‘ 𝐶 )  ∈  V )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  supp  ( 0g ‘ 𝐶 ) )  =  { 𝑥  ∈  ℕ0  ∣  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  ≠  ( 0g ‘ 𝐶 ) } )  | 
						
						
							| 18 | 
							
								13 15 16 17
							 | 
							syl3anc | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  supp  ( 0g ‘ 𝐶 ) )  =  { 𝑥  ∈  ℕ0  ∣  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  ≠  ( 0g ‘ 𝐶 ) } )  | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 )  | 
						
						
							| 20 | 
							
								1 2 3 19
							 | 
							pmatcoe1fsupp | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝑅 ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							oveq1 | 
							⊢ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝑅 )  →  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( ( 0g ‘ 𝑅 )  ×  ( 𝑥  ↑  𝑋 ) ) )  | 
						
						
							| 22 | 
							
								4
							 | 
							a1i | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →   ×   =  (  ·𝑠  ‘ 𝑃 ) )  | 
						
						
							| 23 | 
							
								1
							 | 
							ply1sca | 
							⊢ ( 𝑅  ∈  Ring  →  𝑅  =  ( Scalar ‘ 𝑃 ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑅  =  ( Scalar ‘ 𝑃 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							fveq2d | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 0g ‘ 𝑅 )  =  ( 0g ‘ ( Scalar ‘ 𝑃 ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑥  ↑  𝑋 )  =  ( 𝑥  ↑  𝑋 ) )  | 
						
						
							| 27 | 
							
								22 25 26
							 | 
							oveq123d | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ( 0g ‘ 𝑅 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) (  ·𝑠  ‘ 𝑃 ) ( 𝑥  ↑  𝑋 ) ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  →  ( ( 0g ‘ 𝑅 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) (  ·𝑠  ‘ 𝑃 ) ( 𝑥  ↑  𝑋 ) ) )  | 
						
						
							| 29 | 
							
								24
							 | 
							eqcomd | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( Scalar ‘ 𝑃 )  =  𝑅 )  | 
						
						
							| 30 | 
							
								29
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  →  ( Scalar ‘ 𝑃 )  =  𝑅 )  | 
						
						
							| 31 | 
							
								30
							 | 
							fveq2d | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  →  ( 0g ‘ ( Scalar ‘ 𝑃 ) )  =  ( 0g ‘ 𝑅 ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							oveq1d | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  →  ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) (  ·𝑠  ‘ 𝑃 ) ( 𝑥  ↑  𝑋 ) )  =  ( ( 0g ‘ 𝑅 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑥  ↑  𝑋 ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  𝑅  ∈  Ring )  | 
						
						
							| 34 | 
							
								
							 | 
							eqid | 
							⊢ ( mulGrp ‘ 𝑃 )  =  ( mulGrp ‘ 𝑃 )  | 
						
						
							| 35 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 )  | 
						
						
							| 36 | 
							
								1 6 34 5 35
							 | 
							ply1moncl | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑥  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							3ad2antl2 | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑥  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) )  | 
						
						
							| 38 | 
							
								33 37
							 | 
							jca | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑅  ∈  Ring  ∧  ( 𝑥  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							adantr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁 )  →  ( 𝑅  ∈  Ring  ∧  ( 𝑥  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							adantr | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  →  ( 𝑅  ∈  Ring  ∧  ( 𝑥  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) )  | 
						
						
							| 41 | 
							
								
							 | 
							eqid | 
							⊢ (  ·𝑠  ‘ 𝑃 )  =  (  ·𝑠  ‘ 𝑃 )  | 
						
						
							| 42 | 
							
								1 35 41 19
							 | 
							ply10s0 | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑥  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) )  →  ( ( 0g ‘ 𝑅 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) )  | 
						
						
							| 43 | 
							
								40 42
							 | 
							syl | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  →  ( ( 0g ‘ 𝑅 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) )  | 
						
						
							| 44 | 
							
								28 32 43
							 | 
							3eqtrd | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  →  ( ( 0g ‘ 𝑅 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) )  | 
						
						
							| 45 | 
							
								21 44
							 | 
							sylan9eqr | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  ∧  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝑅 ) )  →  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							ex | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁 )  ∧  𝑗  ∈  𝑁 )  →  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝑅 )  →  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							anasss | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝑅 )  →  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							ralimdvva | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝑅 )  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							imim2d | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝑅 ) )  →  ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							ralimdva | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝑅 ) )  →  ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							reximdv | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝑅 ) )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) )  | 
						
						
							| 52 | 
							
								20 51
							 | 
							mpd | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) )  | 
						
						
							| 53 | 
							
								
							 | 
							simpl3 | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  𝑀  ∈  𝐵 )  | 
						
						
							| 54 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  𝑥  ∈  ℕ0 )  | 
						
						
							| 55 | 
							
								33 53 54
							 | 
							3jca | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵  ∧  𝑥  ∈  ℕ0 ) )  | 
						
						
							| 56 | 
							
								1 2 3
							 | 
							decpmate | 
							⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  =  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) )  | 
						
						
							| 57 | 
							
								55 56
							 | 
							sylan | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  =  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							oveq1d | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  ×  ( 𝑥  ↑  𝑋 ) ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							eqeq1d | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 )  ↔  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) )  | 
						
						
							| 60 | 
							
								59
							 | 
							2ralbidva | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 )  ↔  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							imbi2d | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) )  ↔  ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							ralbidva | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) )  ↔  ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							rexbidv | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) )  ↔  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) )  | 
						
						
							| 64 | 
							
								52 63
							 | 
							mpbird | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) )  | 
						
						
							| 65 | 
							
								
							 | 
							eqid | 
							⊢ 𝑁  =  𝑁  | 
						
						
							| 66 | 
							
								65
							 | 
							biantrur | 
							⊢ ( ∀ 𝑖  ∈  𝑁 ( 𝑁  =  𝑁  ∧  ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) )  ↔  ( 𝑁  =  𝑁  ∧  ∀ 𝑖  ∈  𝑁 ( 𝑁  =  𝑁  ∧  ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) )  | 
						
						
							| 67 | 
							
								65
							 | 
							biantrur | 
							⊢ ( ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 )  ↔  ( 𝑁  =  𝑁  ∧  ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							bicomi | 
							⊢ ( ( 𝑁  =  𝑁  ∧  ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) )  ↔  ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							ralbii | 
							⊢ ( ∀ 𝑖  ∈  𝑁 ( 𝑁  =  𝑁  ∧  ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) )  ↔  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) )  | 
						
						
							| 70 | 
							
								66 69
							 | 
							bitr3i | 
							⊢ ( ( 𝑁  =  𝑁  ∧  ∀ 𝑖  ∈  𝑁 ( 𝑁  =  𝑁  ∧  ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) )  ↔  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							a1i | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ( 𝑁  =  𝑁  ∧  ∀ 𝑖  ∈  𝑁 ( 𝑁  =  𝑁  ∧  ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) )  ↔  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							imbi2d | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ( 𝑦  <  𝑥  →  ( 𝑁  =  𝑁  ∧  ∀ 𝑖  ∈  𝑁 ( 𝑁  =  𝑁  ∧  ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) )  ↔  ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							rexralbidv | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ( 𝑁  =  𝑁  ∧  ∀ 𝑖  ∈  𝑁 ( 𝑁  =  𝑁  ∧  ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) )  ↔  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) )  | 
						
						
							| 74 | 
							
								64 73
							 | 
							mpbird | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ( 𝑁  =  𝑁  ∧  ∀ 𝑖  ∈  𝑁 ( 𝑁  =  𝑁  ∧  ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) ) )  | 
						
						
							| 75 | 
							
								
							 | 
							mpoeq123 | 
							⊢ ( ( 𝑁  =  𝑁  ∧  ∀ 𝑖  ∈  𝑁 ( 𝑁  =  𝑁  ∧  ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑃 ) ) )  | 
						
						
							| 76 | 
							
								75
							 | 
							imim2i | 
							⊢ ( ( 𝑦  <  𝑥  →  ( 𝑁  =  𝑁  ∧  ∀ 𝑖  ∈  𝑁 ( 𝑁  =  𝑁  ∧  ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) )  →  ( 𝑦  <  𝑥  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑃 ) ) ) )  | 
						
						
							| 77 | 
							
								76
							 | 
							ralimi | 
							⊢ ( ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ( 𝑁  =  𝑁  ∧  ∀ 𝑖  ∈  𝑁 ( 𝑁  =  𝑁  ∧  ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) )  →  ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑃 ) ) ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							reximi | 
							⊢ ( ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ( 𝑁  =  𝑁  ∧  ∀ 𝑖  ∈  𝑁 ( 𝑁  =  𝑁  ∧  ∀ 𝑗  ∈  𝑁 ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑃 ) ) ) )  | 
						
						
							| 79 | 
							
								74 78
							 | 
							syl | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑃 ) ) ) )  | 
						
						
							| 80 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) )  | 
						
						
							| 81 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑛  =  𝑥  →  ( 𝑀  decompPMat  𝑛 )  =  ( 𝑀  decompPMat  𝑥 ) )  | 
						
						
							| 82 | 
							
								81
							 | 
							oveqd | 
							⊢ ( 𝑛  =  𝑥  →  ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  =  ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 ) )  | 
						
						
							| 83 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑛  =  𝑥  →  ( 𝑛  ↑  𝑋 )  =  ( 𝑥  ↑  𝑋 ) )  | 
						
						
							| 84 | 
							
								82 83
							 | 
							oveq12d | 
							⊢ ( 𝑛  =  𝑥  →  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) )  =  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) ) )  | 
						
						
							| 85 | 
							
								84
							 | 
							mpoeq3dv | 
							⊢ ( 𝑛  =  𝑥  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) ) ) )  | 
						
						
							| 86 | 
							
								85
							 | 
							adantl | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  𝑛  =  𝑥 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) ) ) )  | 
						
						
							| 87 | 
							
								
							 | 
							id | 
							⊢ ( 𝑁  ∈  Fin  →  𝑁  ∈  Fin )  | 
						
						
							| 88 | 
							
								87
							 | 
							ancri | 
							⊢ ( 𝑁  ∈  Fin  →  ( 𝑁  ∈  Fin  ∧  𝑁  ∈  Fin ) )  | 
						
						
							| 89 | 
							
								88
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑁  ∈  Fin ) )  | 
						
						
							| 90 | 
							
								89
							 | 
							adantr | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑁  ∈  Fin  ∧  𝑁  ∈  Fin ) )  | 
						
						
							| 91 | 
							
								
							 | 
							mpoexga | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑁  ∈  Fin )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) ) )  ∈  V )  | 
						
						
							| 92 | 
							
								90 91
							 | 
							syl | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) ) )  ∈  V )  | 
						
						
							| 93 | 
							
								80 86 54 92
							 | 
							fvmptd | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) ) ) )  | 
						
						
							| 94 | 
							
								1
							 | 
							ply1ring | 
							⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring )  | 
						
						
							| 95 | 
							
								94
							 | 
							anim2i | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring ) )  | 
						
						
							| 96 | 
							
								95
							 | 
							3adant3 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring ) )  | 
						
						
							| 97 | 
							
								96
							 | 
							adantr | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring ) )  | 
						
						
							| 98 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝑃 )  =  ( 0g ‘ 𝑃 )  | 
						
						
							| 99 | 
							
								2 98
							 | 
							mat0op | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring )  →  ( 0g ‘ 𝐶 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑃 ) ) )  | 
						
						
							| 100 | 
							
								97 99
							 | 
							syl | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( 0g ‘ 𝐶 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑃 ) ) )  | 
						
						
							| 101 | 
							
								93 100
							 | 
							eqeq12d | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝐶 )  ↔  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑃 ) ) ) )  | 
						
						
							| 102 | 
							
								101
							 | 
							imbi2d | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( ( 𝑦  <  𝑥  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝐶 ) )  ↔  ( 𝑦  <  𝑥  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑃 ) ) ) ) )  | 
						
						
							| 103 | 
							
								102
							 | 
							ralbidva | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝐶 ) )  ↔  ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑃 ) ) ) ) )  | 
						
						
							| 104 | 
							
								103
							 | 
							rexbidv | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝐶 ) )  ↔  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  ×  ( 𝑥  ↑  𝑋 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑃 ) ) ) ) )  | 
						
						
							| 105 | 
							
								79 104
							 | 
							mpbird | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝐶 ) ) )  | 
						
						
							| 106 | 
							
								
							 | 
							nne | 
							⊢ ( ¬  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  ≠  ( 0g ‘ 𝐶 )  ↔  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝐶 ) )  | 
						
						
							| 107 | 
							
								106
							 | 
							imbi2i | 
							⊢ ( ( 𝑦  <  𝑥  →  ¬  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  ≠  ( 0g ‘ 𝐶 ) )  ↔  ( 𝑦  <  𝑥  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝐶 ) ) )  | 
						
						
							| 108 | 
							
								107
							 | 
							ralbii | 
							⊢ ( ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ¬  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  ≠  ( 0g ‘ 𝐶 ) )  ↔  ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝐶 ) ) )  | 
						
						
							| 109 | 
							
								108
							 | 
							rexbii | 
							⊢ ( ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ¬  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  ≠  ( 0g ‘ 𝐶 ) )  ↔  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝐶 ) ) )  | 
						
						
							| 110 | 
							
								105 109
							 | 
							sylibr | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ¬  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  ≠  ( 0g ‘ 𝐶 ) ) )  | 
						
						
							| 111 | 
							
								
							 | 
							rabssnn0fi | 
							⊢ ( { 𝑥  ∈  ℕ0  ∣  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  ≠  ( 0g ‘ 𝐶 ) }  ∈  Fin  ↔  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ¬  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  ≠  ( 0g ‘ 𝐶 ) ) )  | 
						
						
							| 112 | 
							
								110 111
							 | 
							sylibr | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  { 𝑥  ∈  ℕ0  ∣  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) ) ‘ 𝑥 )  ≠  ( 0g ‘ 𝐶 ) }  ∈  Fin )  | 
						
						
							| 113 | 
							
								18 112
							 | 
							eqeltrd | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  supp  ( 0g ‘ 𝐶 ) )  ∈  Fin )  | 
						
						
							| 114 | 
							
								
							 | 
							funmpt | 
							⊢ Fun  ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  | 
						
						
							| 115 | 
							
								14
							 | 
							mptex | 
							⊢ ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  ∈  V  | 
						
						
							| 116 | 
							
								
							 | 
							funisfsupp | 
							⊢ ( ( Fun  ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  ∧  ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  ∈  V  ∧  ( 0g ‘ 𝐶 )  ∈  V )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  finSupp  ( 0g ‘ 𝐶 )  ↔  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  supp  ( 0g ‘ 𝐶 ) )  ∈  Fin ) )  | 
						
						
							| 117 | 
							
								114 115 16 116
							 | 
							mp3an12i | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  finSupp  ( 0g ‘ 𝐶 )  ↔  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  supp  ( 0g ‘ 𝐶 ) )  ∈  Fin ) )  | 
						
						
							| 118 | 
							
								113 117
							 | 
							mpbird | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑛  ∈  ℕ0  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( 𝑖 ( 𝑀  decompPMat  𝑛 ) 𝑗 )  ×  ( 𝑛  ↑  𝑋 ) ) ) )  finSupp  ( 0g ‘ 𝐶 ) )  |