Step |
Hyp |
Ref |
Expression |
1 |
|
pmatcollpw.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
pmatcollpw.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
3 |
|
pmatcollpw.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
4 |
|
pmatcollpw.m |
⊢ ∗ = ( ·𝑠 ‘ 𝐶 ) |
5 |
|
pmatcollpw.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
6 |
|
pmatcollpw.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
7 |
|
pmatcollpw.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
8 |
|
pmatcollpw3.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
9 |
|
pmatcollpw3.d |
⊢ 𝐷 = ( Base ‘ 𝐴 ) |
10 |
1 2 3 4 5 6 7 8 9
|
pmatcollpw3fi |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ0 ∃ 𝑓 ∈ ( 𝐷 ↑m ( 0 ... 𝑠 ) ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) |
11 |
|
df-n0 |
⊢ ℕ0 = ( ℕ ∪ { 0 } ) |
12 |
11
|
rexeqi |
⊢ ( ∃ 𝑠 ∈ ℕ0 ∃ 𝑓 ∈ ( 𝐷 ↑m ( 0 ... 𝑠 ) ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ↔ ∃ 𝑠 ∈ ( ℕ ∪ { 0 } ) ∃ 𝑓 ∈ ( 𝐷 ↑m ( 0 ... 𝑠 ) ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) |
13 |
|
rexun |
⊢ ( ∃ 𝑠 ∈ ( ℕ ∪ { 0 } ) ∃ 𝑓 ∈ ( 𝐷 ↑m ( 0 ... 𝑠 ) ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ↔ ( ∃ 𝑠 ∈ ℕ ∃ 𝑓 ∈ ( 𝐷 ↑m ( 0 ... 𝑠 ) ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ∨ ∃ 𝑠 ∈ { 0 } ∃ 𝑓 ∈ ( 𝐷 ↑m ( 0 ... 𝑠 ) ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) |
14 |
12 13
|
bitri |
⊢ ( ∃ 𝑠 ∈ ℕ0 ∃ 𝑓 ∈ ( 𝐷 ↑m ( 0 ... 𝑠 ) ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ↔ ( ∃ 𝑠 ∈ ℕ ∃ 𝑓 ∈ ( 𝐷 ↑m ( 0 ... 𝑠 ) ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ∨ ∃ 𝑠 ∈ { 0 } ∃ 𝑓 ∈ ( 𝐷 ↑m ( 0 ... 𝑠 ) ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) |
15 |
|
c0ex |
⊢ 0 ∈ V |
16 |
|
oveq2 |
⊢ ( 𝑠 = 0 → ( 0 ... 𝑠 ) = ( 0 ... 0 ) ) |
17 |
|
0z |
⊢ 0 ∈ ℤ |
18 |
|
fzsn |
⊢ ( 0 ∈ ℤ → ( 0 ... 0 ) = { 0 } ) |
19 |
17 18
|
mp1i |
⊢ ( 𝑠 = 0 → ( 0 ... 0 ) = { 0 } ) |
20 |
16 19
|
eqtrd |
⊢ ( 𝑠 = 0 → ( 0 ... 𝑠 ) = { 0 } ) |
21 |
20
|
oveq2d |
⊢ ( 𝑠 = 0 → ( 𝐷 ↑m ( 0 ... 𝑠 ) ) = ( 𝐷 ↑m { 0 } ) ) |
22 |
20
|
mpteq1d |
⊢ ( 𝑠 = 0 → ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) = ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) |
23 |
22
|
oveq2d |
⊢ ( 𝑠 = 0 → ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) |
24 |
23
|
eqeq2d |
⊢ ( 𝑠 = 0 → ( 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ↔ 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) |
25 |
21 24
|
rexeqbidv |
⊢ ( 𝑠 = 0 → ( ∃ 𝑓 ∈ ( 𝐷 ↑m ( 0 ... 𝑠 ) ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ↔ ∃ 𝑓 ∈ ( 𝐷 ↑m { 0 } ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) |
26 |
15 25
|
rexsn |
⊢ ( ∃ 𝑠 ∈ { 0 } ∃ 𝑓 ∈ ( 𝐷 ↑m ( 0 ... 𝑠 ) ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ↔ ∃ 𝑓 ∈ ( 𝐷 ↑m { 0 } ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) |
27 |
1 2 3 4 5 6 7 8 9
|
pmatcollpw3fi1lem2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ∃ 𝑓 ∈ ( 𝐷 ↑m { 0 } ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) → ∃ 𝑠 ∈ ℕ ∃ 𝑓 ∈ ( 𝐷 ↑m ( 0 ... 𝑠 ) ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) |
28 |
27
|
com12 |
⊢ ( ∃ 𝑓 ∈ ( 𝐷 ↑m { 0 } ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑓 ∈ ( 𝐷 ↑m ( 0 ... 𝑠 ) ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) |
29 |
26 28
|
sylbi |
⊢ ( ∃ 𝑠 ∈ { 0 } ∃ 𝑓 ∈ ( 𝐷 ↑m ( 0 ... 𝑠 ) ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑓 ∈ ( 𝐷 ↑m ( 0 ... 𝑠 ) ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) |
30 |
29
|
jao1i |
⊢ ( ( ∃ 𝑠 ∈ ℕ ∃ 𝑓 ∈ ( 𝐷 ↑m ( 0 ... 𝑠 ) ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ∨ ∃ 𝑠 ∈ { 0 } ∃ 𝑓 ∈ ( 𝐷 ↑m ( 0 ... 𝑠 ) ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑓 ∈ ( 𝐷 ↑m ( 0 ... 𝑠 ) ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) |
31 |
14 30
|
sylbi |
⊢ ( ∃ 𝑠 ∈ ℕ0 ∃ 𝑓 ∈ ( 𝐷 ↑m ( 0 ... 𝑠 ) ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑓 ∈ ( 𝐷 ↑m ( 0 ... 𝑠 ) ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) |
32 |
10 31
|
mpcom |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑓 ∈ ( 𝐷 ↑m ( 0 ... 𝑠 ) ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) |