Step |
Hyp |
Ref |
Expression |
1 |
|
pmatcollpw.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
pmatcollpw.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
3 |
|
pmatcollpw.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
4 |
|
pmatcollpw.m |
⊢ ∗ = ( ·𝑠 ‘ 𝐶 ) |
5 |
|
pmatcollpw.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
6 |
|
pmatcollpw.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
7 |
|
pmatcollpw.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
8 |
|
pmatcollpw3.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
9 |
|
pmatcollpw3.d |
⊢ 𝐷 = ( Base ‘ 𝐴 ) |
10 |
|
pmatcollpw3fi1lem1.0 |
⊢ 0 = ( 0g ‘ 𝐴 ) |
11 |
|
pmatcollpw3fi1lem1.h |
⊢ 𝐻 = ( 𝑙 ∈ ( 0 ... 1 ) ↦ if ( 𝑙 = 0 , ( 𝐺 ‘ 0 ) , 0 ) ) |
12 |
|
simpr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) → 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) |
13 |
1 2
|
pmatring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ Ring ) |
14 |
|
ringmnd |
⊢ ( 𝐶 ∈ Ring → 𝐶 ∈ Mnd ) |
15 |
13 14
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ Mnd ) |
16 |
15
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) → 𝐶 ∈ Mnd ) |
17 |
|
ringcmn |
⊢ ( 𝐶 ∈ Ring → 𝐶 ∈ CMnd ) |
18 |
13 17
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ CMnd ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) → 𝐶 ∈ CMnd ) |
20 |
|
snfi |
⊢ { 0 } ∈ Fin |
21 |
20
|
a1i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) → { 0 } ∈ Fin ) |
22 |
|
simplll |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 ∈ { 0 } ) → 𝑁 ∈ Fin ) |
23 |
|
simpllr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 ∈ { 0 } ) → 𝑅 ∈ Ring ) |
24 |
|
elmapi |
⊢ ( 𝐺 ∈ ( 𝐷 ↑m { 0 } ) → 𝐺 : { 0 } ⟶ 𝐷 ) |
25 |
24
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) → 𝐺 : { 0 } ⟶ 𝐷 ) |
26 |
25
|
ffvelrnda |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 ∈ { 0 } ) → ( 𝐺 ‘ 𝑛 ) ∈ 𝐷 ) |
27 |
|
elsni |
⊢ ( 𝑛 ∈ { 0 } → 𝑛 = 0 ) |
28 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
29 |
27 28
|
eqeltrdi |
⊢ ( 𝑛 ∈ { 0 } → 𝑛 ∈ ℕ0 ) |
30 |
29
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 ∈ { 0 } ) → 𝑛 ∈ ℕ0 ) |
31 |
8 9 7 1 2 3 4 5 6
|
mat2pmatscmxcl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( ( 𝐺 ‘ 𝑛 ) ∈ 𝐷 ∧ 𝑛 ∈ ℕ0 ) ) → ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∈ 𝐵 ) |
32 |
22 23 26 30 31
|
syl22anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 ∈ { 0 } ) → ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∈ 𝐵 ) |
33 |
32
|
ralrimiva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) → ∀ 𝑛 ∈ { 0 } ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∈ 𝐵 ) |
34 |
3 19 21 33
|
gsummptcl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) → ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ∈ 𝐵 ) |
35 |
|
eqid |
⊢ ( +g ‘ 𝐶 ) = ( +g ‘ 𝐶 ) |
36 |
|
eqid |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ 𝐶 ) |
37 |
3 35 36
|
mndrid |
⊢ ( ( 𝐶 ∈ Mnd ∧ ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ∈ 𝐵 ) → ( ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ( +g ‘ 𝐶 ) ( 0g ‘ 𝐶 ) ) = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) |
38 |
16 34 37
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) → ( ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ( +g ‘ 𝐶 ) ( 0g ‘ 𝐶 ) ) = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) |
39 |
|
fz0sn |
⊢ ( 0 ... 0 ) = { 0 } |
40 |
39
|
eqcomi |
⊢ { 0 } = ( 0 ... 0 ) |
41 |
40
|
a1i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) → { 0 } = ( 0 ... 0 ) ) |
42 |
|
simpr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 ∈ { 0 } ) ∧ 𝑙 = 𝑛 ) → 𝑙 = 𝑛 ) |
43 |
27
|
ad2antlr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 ∈ { 0 } ) ∧ 𝑙 = 𝑛 ) → 𝑛 = 0 ) |
44 |
42 43
|
eqtrd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 ∈ { 0 } ) ∧ 𝑙 = 𝑛 ) → 𝑙 = 0 ) |
45 |
44
|
iftrued |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 ∈ { 0 } ) ∧ 𝑙 = 𝑛 ) → if ( 𝑙 = 0 , ( 𝐺 ‘ 0 ) , 0 ) = ( 𝐺 ‘ 0 ) ) |
46 |
|
fveq2 |
⊢ ( 𝑛 = 0 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 0 ) ) |
47 |
46
|
eqcomd |
⊢ ( 𝑛 = 0 → ( 𝐺 ‘ 0 ) = ( 𝐺 ‘ 𝑛 ) ) |
48 |
27 47
|
syl |
⊢ ( 𝑛 ∈ { 0 } → ( 𝐺 ‘ 0 ) = ( 𝐺 ‘ 𝑛 ) ) |
49 |
48
|
ad2antlr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 ∈ { 0 } ) ∧ 𝑙 = 𝑛 ) → ( 𝐺 ‘ 0 ) = ( 𝐺 ‘ 𝑛 ) ) |
50 |
45 49
|
eqtrd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 ∈ { 0 } ) ∧ 𝑙 = 𝑛 ) → if ( 𝑙 = 0 , ( 𝐺 ‘ 0 ) , 0 ) = ( 𝐺 ‘ 𝑛 ) ) |
51 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
52 |
51
|
a1i |
⊢ ( 𝑛 = 0 → 1 ∈ ℕ0 ) |
53 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
54 |
52 53
|
eleqtrdi |
⊢ ( 𝑛 = 0 → 1 ∈ ( ℤ≥ ‘ 0 ) ) |
55 |
|
eluzfz1 |
⊢ ( 1 ∈ ( ℤ≥ ‘ 0 ) → 0 ∈ ( 0 ... 1 ) ) |
56 |
54 55
|
syl |
⊢ ( 𝑛 = 0 → 0 ∈ ( 0 ... 1 ) ) |
57 |
|
eleq1 |
⊢ ( 𝑛 = 0 → ( 𝑛 ∈ ( 0 ... 1 ) ↔ 0 ∈ ( 0 ... 1 ) ) ) |
58 |
56 57
|
mpbird |
⊢ ( 𝑛 = 0 → 𝑛 ∈ ( 0 ... 1 ) ) |
59 |
27 58
|
syl |
⊢ ( 𝑛 ∈ { 0 } → 𝑛 ∈ ( 0 ... 1 ) ) |
60 |
59
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 ∈ { 0 } ) → 𝑛 ∈ ( 0 ... 1 ) ) |
61 |
|
ffvelrn |
⊢ ( ( 𝐺 : { 0 } ⟶ 𝐷 ∧ 𝑛 ∈ { 0 } ) → ( 𝐺 ‘ 𝑛 ) ∈ 𝐷 ) |
62 |
61
|
ex |
⊢ ( 𝐺 : { 0 } ⟶ 𝐷 → ( 𝑛 ∈ { 0 } → ( 𝐺 ‘ 𝑛 ) ∈ 𝐷 ) ) |
63 |
24 62
|
syl |
⊢ ( 𝐺 ∈ ( 𝐷 ↑m { 0 } ) → ( 𝑛 ∈ { 0 } → ( 𝐺 ‘ 𝑛 ) ∈ 𝐷 ) ) |
64 |
63
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) → ( 𝑛 ∈ { 0 } → ( 𝐺 ‘ 𝑛 ) ∈ 𝐷 ) ) |
65 |
64
|
imp |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 ∈ { 0 } ) → ( 𝐺 ‘ 𝑛 ) ∈ 𝐷 ) |
66 |
11 50 60 65
|
fvmptd2 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 ∈ { 0 } ) → ( 𝐻 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) |
67 |
66
|
eqcomd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 ∈ { 0 } ) → ( 𝐺 ‘ 𝑛 ) = ( 𝐻 ‘ 𝑛 ) ) |
68 |
67
|
fveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 ∈ { 0 } ) → ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) |
69 |
68
|
oveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 ∈ { 0 } ) → ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) = ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) |
70 |
41 69
|
mpteq12dva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) → ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) = ( 𝑛 ∈ ( 0 ... 0 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) |
71 |
70
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) → ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 0 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ) |
72 |
|
ovexd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) → ( 0 + 1 ) ∈ V ) |
73 |
3 36
|
mndidcl |
⊢ ( 𝐶 ∈ Mnd → ( 0g ‘ 𝐶 ) ∈ 𝐵 ) |
74 |
15 73
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g ‘ 𝐶 ) ∈ 𝐵 ) |
75 |
74
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) → ( 0g ‘ 𝐶 ) ∈ 𝐵 ) |
76 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
77 |
76
|
eqeq2i |
⊢ ( 𝑛 = ( 0 + 1 ) ↔ 𝑛 = 1 ) |
78 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
79 |
78
|
neii |
⊢ ¬ 1 = 0 |
80 |
|
eqeq1 |
⊢ ( 𝑛 = 1 → ( 𝑛 = 0 ↔ 1 = 0 ) ) |
81 |
79 80
|
mtbiri |
⊢ ( 𝑛 = 1 → ¬ 𝑛 = 0 ) |
82 |
77 81
|
sylbi |
⊢ ( 𝑛 = ( 0 + 1 ) → ¬ 𝑛 = 0 ) |
83 |
82
|
ad2antlr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 = ( 0 + 1 ) ) ∧ 𝑙 = 𝑛 ) → ¬ 𝑛 = 0 ) |
84 |
|
eqeq1 |
⊢ ( 𝑙 = 𝑛 → ( 𝑙 = 0 ↔ 𝑛 = 0 ) ) |
85 |
84
|
notbid |
⊢ ( 𝑙 = 𝑛 → ( ¬ 𝑙 = 0 ↔ ¬ 𝑛 = 0 ) ) |
86 |
85
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 = ( 0 + 1 ) ) ∧ 𝑙 = 𝑛 ) → ( ¬ 𝑙 = 0 ↔ ¬ 𝑛 = 0 ) ) |
87 |
83 86
|
mpbird |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 = ( 0 + 1 ) ) ∧ 𝑙 = 𝑛 ) → ¬ 𝑙 = 0 ) |
88 |
87
|
iffalsed |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 = ( 0 + 1 ) ) ∧ 𝑙 = 𝑛 ) → if ( 𝑙 = 0 , ( 𝐺 ‘ 0 ) , 0 ) = 0 ) |
89 |
88 10
|
eqtrdi |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 = ( 0 + 1 ) ) ∧ 𝑙 = 𝑛 ) → if ( 𝑙 = 0 , ( 𝐺 ‘ 0 ) , 0 ) = ( 0g ‘ 𝐴 ) ) |
90 |
51
|
a1i |
⊢ ( 𝑛 = 1 → 1 ∈ ℕ0 ) |
91 |
90 53
|
eleqtrdi |
⊢ ( 𝑛 = 1 → 1 ∈ ( ℤ≥ ‘ 0 ) ) |
92 |
|
eluzfz2 |
⊢ ( 1 ∈ ( ℤ≥ ‘ 0 ) → 1 ∈ ( 0 ... 1 ) ) |
93 |
91 92
|
syl |
⊢ ( 𝑛 = 1 → 1 ∈ ( 0 ... 1 ) ) |
94 |
|
eleq1 |
⊢ ( 𝑛 = 1 → ( 𝑛 ∈ ( 0 ... 1 ) ↔ 1 ∈ ( 0 ... 1 ) ) ) |
95 |
93 94
|
mpbird |
⊢ ( 𝑛 = 1 → 𝑛 ∈ ( 0 ... 1 ) ) |
96 |
77 95
|
sylbi |
⊢ ( 𝑛 = ( 0 + 1 ) → 𝑛 ∈ ( 0 ... 1 ) ) |
97 |
96
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 = ( 0 + 1 ) ) → 𝑛 ∈ ( 0 ... 1 ) ) |
98 |
|
fvexd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 = ( 0 + 1 ) ) → ( 0g ‘ 𝐴 ) ∈ V ) |
99 |
11 89 97 98
|
fvmptd2 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 = ( 0 + 1 ) ) → ( 𝐻 ‘ 𝑛 ) = ( 0g ‘ 𝐴 ) ) |
100 |
99
|
fveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 = ( 0 + 1 ) ) → ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) = ( 𝑇 ‘ ( 0g ‘ 𝐴 ) ) ) |
101 |
8
|
fveq2i |
⊢ ( 0g ‘ 𝐴 ) = ( 0g ‘ ( 𝑁 Mat 𝑅 ) ) |
102 |
2
|
fveq2i |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ ( 𝑁 Mat 𝑃 ) ) |
103 |
7 1 101 102
|
0mat2pmat |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ) → ( 𝑇 ‘ ( 0g ‘ 𝐴 ) ) = ( 0g ‘ 𝐶 ) ) |
104 |
103
|
ancoms |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑇 ‘ ( 0g ‘ 𝐴 ) ) = ( 0g ‘ 𝐶 ) ) |
105 |
104
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 = ( 0 + 1 ) ) → ( 𝑇 ‘ ( 0g ‘ 𝐴 ) ) = ( 0g ‘ 𝐶 ) ) |
106 |
100 105
|
eqtrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 = ( 0 + 1 ) ) → ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) = ( 0g ‘ 𝐶 ) ) |
107 |
106
|
oveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 = ( 0 + 1 ) ) → ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) = ( ( 𝑛 ↑ 𝑋 ) ∗ ( 0g ‘ 𝐶 ) ) ) |
108 |
1 2
|
pmatlmod |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ LMod ) |
109 |
108
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 = ( 0 + 1 ) ) → 𝐶 ∈ LMod ) |
110 |
|
simpllr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 = ( 0 + 1 ) ) → 𝑅 ∈ Ring ) |
111 |
|
eleq1 |
⊢ ( 𝑛 = 1 → ( 𝑛 ∈ ℕ0 ↔ 1 ∈ ℕ0 ) ) |
112 |
90 111
|
mpbird |
⊢ ( 𝑛 = 1 → 𝑛 ∈ ℕ0 ) |
113 |
77 112
|
sylbi |
⊢ ( 𝑛 = ( 0 + 1 ) → 𝑛 ∈ ℕ0 ) |
114 |
113
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 = ( 0 + 1 ) ) → 𝑛 ∈ ℕ0 ) |
115 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
116 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
117 |
1 6 115 5 116
|
ply1moncl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
118 |
110 114 117
|
syl2anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 = ( 0 + 1 ) ) → ( 𝑛 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
119 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
120 |
2
|
matsca2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) → 𝑃 = ( Scalar ‘ 𝐶 ) ) |
121 |
119 120
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑃 = ( Scalar ‘ 𝐶 ) ) |
122 |
121
|
eqcomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Scalar ‘ 𝐶 ) = 𝑃 ) |
123 |
122
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ 𝑃 ) ) |
124 |
123
|
eleq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( 𝑛 ↑ 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↔ ( 𝑛 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) ) |
125 |
124
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 = ( 0 + 1 ) ) → ( ( 𝑛 ↑ 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ↔ ( 𝑛 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) ) |
126 |
118 125
|
mpbird |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 = ( 0 + 1 ) ) → ( 𝑛 ↑ 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
127 |
|
eqid |
⊢ ( Scalar ‘ 𝐶 ) = ( Scalar ‘ 𝐶 ) |
128 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) ) |
129 |
127 4 128 36
|
lmodvs0 |
⊢ ( ( 𝐶 ∈ LMod ∧ ( 𝑛 ↑ 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) → ( ( 𝑛 ↑ 𝑋 ) ∗ ( 0g ‘ 𝐶 ) ) = ( 0g ‘ 𝐶 ) ) |
130 |
109 126 129
|
syl2anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 = ( 0 + 1 ) ) → ( ( 𝑛 ↑ 𝑋 ) ∗ ( 0g ‘ 𝐶 ) ) = ( 0g ‘ 𝐶 ) ) |
131 |
107 130
|
eqtrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 = ( 0 + 1 ) ) → ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝐶 ) ) |
132 |
3 16 72 75 131
|
gsumsnd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) → ( 𝐶 Σg ( 𝑛 ∈ { ( 0 + 1 ) } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) = ( 0g ‘ 𝐶 ) ) |
133 |
132
|
eqcomd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) → ( 0g ‘ 𝐶 ) = ( 𝐶 Σg ( 𝑛 ∈ { ( 0 + 1 ) } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ) |
134 |
71 133
|
oveq12d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) → ( ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ( +g ‘ 𝐶 ) ( 0g ‘ 𝐶 ) ) = ( ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 0 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ( +g ‘ 𝐶 ) ( 𝐶 Σg ( 𝑛 ∈ { ( 0 + 1 ) } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ) ) |
135 |
38 134
|
eqtr3d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) → ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) = ( ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 0 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ( +g ‘ 𝐶 ) ( 𝐶 Σg ( 𝑛 ∈ { ( 0 + 1 ) } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ) ) |
136 |
135
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) → ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) = ( ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 0 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ( +g ‘ 𝐶 ) ( 𝐶 Σg ( 𝑛 ∈ { ( 0 + 1 ) } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ) ) |
137 |
12 136
|
eqtrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) → 𝑀 = ( ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 0 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ( +g ‘ 𝐶 ) ( 𝐶 Σg ( 𝑛 ∈ { ( 0 + 1 ) } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ) ) |
138 |
137
|
3impa |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ∧ 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) → 𝑀 = ( ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 0 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ( +g ‘ 𝐶 ) ( 𝐶 Σg ( 𝑛 ∈ { ( 0 + 1 ) } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ) ) |
139 |
28
|
a1i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) → 0 ∈ ℕ0 ) |
140 |
|
simplll |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 ∈ ( 0 ... ( 0 + 1 ) ) ) → 𝑁 ∈ Fin ) |
141 |
|
simpllr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 ∈ ( 0 ... ( 0 + 1 ) ) ) → 𝑅 ∈ Ring ) |
142 |
|
id |
⊢ ( 𝐺 : { 0 } ⟶ 𝐷 → 𝐺 : { 0 } ⟶ 𝐷 ) |
143 |
|
c0ex |
⊢ 0 ∈ V |
144 |
143
|
snid |
⊢ 0 ∈ { 0 } |
145 |
144
|
a1i |
⊢ ( 𝐺 : { 0 } ⟶ 𝐷 → 0 ∈ { 0 } ) |
146 |
142 145
|
ffvelrnd |
⊢ ( 𝐺 : { 0 } ⟶ 𝐷 → ( 𝐺 ‘ 0 ) ∈ 𝐷 ) |
147 |
24 146
|
syl |
⊢ ( 𝐺 ∈ ( 𝐷 ↑m { 0 } ) → ( 𝐺 ‘ 0 ) ∈ 𝐷 ) |
148 |
147
|
ad2antlr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑙 ∈ ( 0 ... 1 ) ) → ( 𝐺 ‘ 0 ) ∈ 𝐷 ) |
149 |
8
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
150 |
9 10
|
ring0cl |
⊢ ( 𝐴 ∈ Ring → 0 ∈ 𝐷 ) |
151 |
149 150
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 0 ∈ 𝐷 ) |
152 |
151
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑙 ∈ ( 0 ... 1 ) ) → 0 ∈ 𝐷 ) |
153 |
148 152
|
ifcld |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑙 ∈ ( 0 ... 1 ) ) → if ( 𝑙 = 0 , ( 𝐺 ‘ 0 ) , 0 ) ∈ 𝐷 ) |
154 |
153 11
|
fmptd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) → 𝐻 : ( 0 ... 1 ) ⟶ 𝐷 ) |
155 |
76
|
oveq2i |
⊢ ( 0 ... ( 0 + 1 ) ) = ( 0 ... 1 ) |
156 |
155
|
feq2i |
⊢ ( 𝐻 : ( 0 ... ( 0 + 1 ) ) ⟶ 𝐷 ↔ 𝐻 : ( 0 ... 1 ) ⟶ 𝐷 ) |
157 |
154 156
|
sylibr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) → 𝐻 : ( 0 ... ( 0 + 1 ) ) ⟶ 𝐷 ) |
158 |
157
|
ffvelrnda |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 ∈ ( 0 ... ( 0 + 1 ) ) ) → ( 𝐻 ‘ 𝑛 ) ∈ 𝐷 ) |
159 |
|
elfznn0 |
⊢ ( 𝑛 ∈ ( 0 ... ( 0 + 1 ) ) → 𝑛 ∈ ℕ0 ) |
160 |
159
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 ∈ ( 0 ... ( 0 + 1 ) ) ) → 𝑛 ∈ ℕ0 ) |
161 |
8 9 7 1 2 3 4 5 6
|
mat2pmatscmxcl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( ( 𝐻 ‘ 𝑛 ) ∈ 𝐷 ∧ 𝑛 ∈ ℕ0 ) ) → ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ∈ 𝐵 ) |
162 |
140 141 158 160 161
|
syl22anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑛 ∈ ( 0 ... ( 0 + 1 ) ) ) → ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ∈ 𝐵 ) |
163 |
3 35 19 139 162
|
gsummptfzsplit |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ) → ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... ( 0 + 1 ) ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) = ( ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 0 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ( +g ‘ 𝐶 ) ( 𝐶 Σg ( 𝑛 ∈ { ( 0 + 1 ) } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ) ) |
164 |
163
|
3adant3 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ∧ 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) → ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... ( 0 + 1 ) ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) = ( ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 0 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ( +g ‘ 𝐶 ) ( 𝐶 Σg ( 𝑛 ∈ { ( 0 + 1 ) } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ) ) |
165 |
138 164
|
eqtr4d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ∧ 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) → 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... ( 0 + 1 ) ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ) |
166 |
155
|
mpteq1i |
⊢ ( 𝑛 ∈ ( 0 ... ( 0 + 1 ) ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) = ( 𝑛 ∈ ( 0 ... 1 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) |
167 |
166
|
oveq2i |
⊢ ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... ( 0 + 1 ) ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 1 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) |
168 |
165 167
|
eqtrdi |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝐺 ∈ ( 𝐷 ↑m { 0 } ) ∧ 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) → 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 1 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝐻 ‘ 𝑛 ) ) ) ) ) ) |