| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pmatcollpw.p | 
							⊢ 𝑃  =  ( Poly1 ‘ 𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							pmatcollpw.c | 
							⊢ 𝐶  =  ( 𝑁  Mat  𝑃 )  | 
						
						
							| 3 | 
							
								
							 | 
							pmatcollpw.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐶 )  | 
						
						
							| 4 | 
							
								
							 | 
							pmatcollpw.m | 
							⊢  ∗   =  (  ·𝑠  ‘ 𝐶 )  | 
						
						
							| 5 | 
							
								
							 | 
							pmatcollpw.e | 
							⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							pmatcollpw.x | 
							⊢ 𝑋  =  ( var1 ‘ 𝑅 )  | 
						
						
							| 7 | 
							
								
							 | 
							pmatcollpw.t | 
							⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 )  | 
						
						
							| 8 | 
							
								
							 | 
							pmatcollpw3.a | 
							⊢ 𝐴  =  ( 𝑁  Mat  𝑅 )  | 
						
						
							| 9 | 
							
								
							 | 
							pmatcollpw3.d | 
							⊢ 𝐷  =  ( Base ‘ 𝐴 )  | 
						
						
							| 10 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝑓  =  𝑔  →  ( 𝑓 ‘ 𝑛 )  =  ( 𝑔 ‘ 𝑛 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							fveq2d | 
							⊢ ( 𝑓  =  𝑔  →  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) )  =  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							oveq2d | 
							⊢ ( 𝑓  =  𝑔  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) )  =  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							mpteq2dv | 
							⊢ ( 𝑓  =  𝑔  →  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) )  =  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							oveq2d | 
							⊢ ( 𝑓  =  𝑔  →  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							eqeq2d | 
							⊢ ( 𝑓  =  𝑔  →  ( 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  ↔  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							cbvrexvw | 
							⊢ ( ∃ 𝑓  ∈  ( 𝐷  ↑m  { 0 } ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  ↔  ∃ 𝑔  ∈  ( 𝐷  ↑m  { 0 } ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							crngring | 
							⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring )  | 
						
						
							| 18 | 
							
								17
							 | 
							anim2i | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							3adant3 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) )  | 
						
						
							| 21 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) )  →  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  | 
						
						
							| 22 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) )  →  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝐴 )  =  ( 0g ‘ 𝐴 )  | 
						
						
							| 24 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) )  =  ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) )  | 
						
						
							| 25 | 
							
								1 2 3 4 5 6 7 8 9 23 24
							 | 
							pmatcollpw3fi1lem1 | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) )  →  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) ) )  | 
						
						
							| 26 | 
							
								20 21 22 25
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) )  →  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							1nn | 
							⊢ 1  ∈  ℕ  | 
						
						
							| 28 | 
							
								27
							 | 
							a1i | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) ) )  →  1  ∈  ℕ )  | 
						
						
							| 29 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑠  =  1  →  ( 0 ... 𝑠 )  =  ( 0 ... 1 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							oveq2d | 
							⊢ ( 𝑠  =  1  →  ( 𝐷  ↑m  ( 0 ... 𝑠 ) )  =  ( 𝐷  ↑m  ( 0 ... 1 ) ) )  | 
						
						
							| 31 | 
							
								29
							 | 
							mpteq1d | 
							⊢ ( 𝑠  =  1  →  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) )  =  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							oveq2d | 
							⊢ ( 𝑠  =  1  →  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							eqeq2d | 
							⊢ ( 𝑠  =  1  →  ( 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  ↔  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) )  | 
						
						
							| 34 | 
							
								30 33
							 | 
							rexeqbidv | 
							⊢ ( 𝑠  =  1  →  ( ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  ↔  ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 1 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							adantl | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) ) )  ∧  𝑠  =  1 )  →  ( ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  ↔  ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 1 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) )  | 
						
						
							| 36 | 
							
								
							 | 
							elmapi | 
							⊢ ( 𝑔  ∈  ( 𝐷  ↑m  { 0 } )  →  𝑔 : { 0 } ⟶ 𝐷 )  | 
						
						
							| 37 | 
							
								
							 | 
							c0ex | 
							⊢ 0  ∈  V  | 
						
						
							| 38 | 
							
								37
							 | 
							snid | 
							⊢ 0  ∈  { 0 }  | 
						
						
							| 39 | 
							
								38
							 | 
							a1i | 
							⊢ ( 𝑙  ∈  ( 0 ... 1 )  →  0  ∈  { 0 } )  | 
						
						
							| 40 | 
							
								
							 | 
							ffvelcdm | 
							⊢ ( ( 𝑔 : { 0 } ⟶ 𝐷  ∧  0  ∈  { 0 } )  →  ( 𝑔 ‘ 0 )  ∈  𝐷 )  | 
						
						
							| 41 | 
							
								39 40
							 | 
							sylan2 | 
							⊢ ( ( 𝑔 : { 0 } ⟶ 𝐷  ∧  𝑙  ∈  ( 0 ... 1 ) )  →  ( 𝑔 ‘ 0 )  ∈  𝐷 )  | 
						
						
							| 42 | 
							
								41
							 | 
							ex | 
							⊢ ( 𝑔 : { 0 } ⟶ 𝐷  →  ( 𝑙  ∈  ( 0 ... 1 )  →  ( 𝑔 ‘ 0 )  ∈  𝐷 ) )  | 
						
						
							| 43 | 
							
								36 42
							 | 
							syl | 
							⊢ ( 𝑔  ∈  ( 𝐷  ↑m  { 0 } )  →  ( 𝑙  ∈  ( 0 ... 1 )  →  ( 𝑔 ‘ 0 )  ∈  𝐷 ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							adantl | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  →  ( 𝑙  ∈  ( 0 ... 1 )  →  ( 𝑔 ‘ 0 )  ∈  𝐷 ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							imp | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑙  ∈  ( 0 ... 1 ) )  →  ( 𝑔 ‘ 0 )  ∈  𝐷 )  | 
						
						
							| 46 | 
							
								8
							 | 
							matring | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring )  | 
						
						
							| 47 | 
							
								17 46
							 | 
							sylan2 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝐴  ∈  Ring )  | 
						
						
							| 48 | 
							
								47
							 | 
							3adant3 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐴  ∈  Ring )  | 
						
						
							| 49 | 
							
								9 23
							 | 
							ring0cl | 
							⊢ ( 𝐴  ∈  Ring  →  ( 0g ‘ 𝐴 )  ∈  𝐷 )  | 
						
						
							| 50 | 
							
								48 49
							 | 
							syl | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 0g ‘ 𝐴 )  ∈  𝐷 )  | 
						
						
							| 51 | 
							
								50
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑙  ∈  ( 0 ... 1 ) )  →  ( 0g ‘ 𝐴 )  ∈  𝐷 )  | 
						
						
							| 52 | 
							
								45 51
							 | 
							ifcld | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑙  ∈  ( 0 ... 1 ) )  →  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) )  ∈  𝐷 )  | 
						
						
							| 53 | 
							
								52
							 | 
							fmpttd | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  →  ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) : ( 0 ... 1 ) ⟶ 𝐷 )  | 
						
						
							| 54 | 
							
								9
							 | 
							fvexi | 
							⊢ 𝐷  ∈  V  | 
						
						
							| 55 | 
							
								
							 | 
							ovex | 
							⊢ ( 0 ... 1 )  ∈  V  | 
						
						
							| 56 | 
							
								54 55
							 | 
							pm3.2i | 
							⊢ ( 𝐷  ∈  V  ∧  ( 0 ... 1 )  ∈  V )  | 
						
						
							| 57 | 
							
								
							 | 
							elmapg | 
							⊢ ( ( 𝐷  ∈  V  ∧  ( 0 ... 1 )  ∈  V )  →  ( ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) )  ∈  ( 𝐷  ↑m  ( 0 ... 1 ) )  ↔  ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) : ( 0 ... 1 ) ⟶ 𝐷 ) )  | 
						
						
							| 58 | 
							
								56 57
							 | 
							mp1i | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  →  ( ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) )  ∈  ( 𝐷  ↑m  ( 0 ... 1 ) )  ↔  ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) : ( 0 ... 1 ) ⟶ 𝐷 ) )  | 
						
						
							| 59 | 
							
								53 58
							 | 
							mpbird | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  →  ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) )  ∈  ( 𝐷  ↑m  ( 0 ... 1 ) ) )  | 
						
						
							| 60 | 
							
								59
							 | 
							adantr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) )  →  ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) )  ∈  ( 𝐷  ↑m  ( 0 ... 1 ) ) )  | 
						
						
							| 61 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝑓  =  ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) )  →  ( 𝑓 ‘ 𝑛 )  =  ( ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							fveq2d | 
							⊢ ( 𝑓  =  ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) )  →  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) )  =  ( 𝑇 ‘ ( ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							oveq2d | 
							⊢ ( 𝑓  =  ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) )  =  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							mpteq2dv | 
							⊢ ( 𝑓  =  ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) )  →  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) )  =  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) )  | 
						
						
							| 65 | 
							
								64
							 | 
							oveq2d | 
							⊢ ( 𝑓  =  ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) )  →  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) ) )  | 
						
						
							| 66 | 
							
								65
							 | 
							eqeq2d | 
							⊢ ( 𝑓  =  ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) )  →  ( 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  ↔  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) ) ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							adantl | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) )  ∧  𝑓  =  ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) )  →  ( 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  ↔  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) ) ) )  | 
						
						
							| 68 | 
							
								60 67
							 | 
							rspcedv | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) )  →  ( 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) )  →  ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 1 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							imp | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) ) )  →  ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 1 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) )  | 
						
						
							| 70 | 
							
								28 35 69
							 | 
							rspcedvd | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 1 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( ( 𝑙  ∈  ( 0 ... 1 )  ↦  if ( 𝑙  =  0 ,  ( 𝑔 ‘ 0 ) ,  ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) ) )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) )  | 
						
						
							| 71 | 
							
								26 70
							 | 
							mpdan | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑔  ∈  ( 𝐷  ↑m  { 0 } ) )  ∧  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							rexlimdva2 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ∃ 𝑔  ∈  ( 𝐷  ↑m  { 0 } ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) )  | 
						
						
							| 73 | 
							
								16 72
							 | 
							biimtrid | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ∃ 𝑓  ∈  ( 𝐷  ↑m  { 0 } ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  { 0 }  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑓  ∈  ( 𝐷  ↑m  ( 0 ... 𝑠 ) ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) )  |