Step |
Hyp |
Ref |
Expression |
1 |
|
pmatcollpw.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
pmatcollpw.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
3 |
|
pmatcollpw.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
4 |
|
pmatcollpw.m |
⊢ ∗ = ( ·𝑠 ‘ 𝐶 ) |
5 |
|
pmatcollpw.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
6 |
|
pmatcollpw.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
7 |
|
pmatcollpw.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
8 |
|
pmatcollpw3.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
9 |
|
pmatcollpw3.d |
⊢ 𝐷 = ( Base ‘ 𝐴 ) |
10 |
|
fveq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ 𝑛 ) = ( 𝑔 ‘ 𝑛 ) ) |
11 |
10
|
fveq2d |
⊢ ( 𝑓 = 𝑔 → ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) = ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) = ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) |
13 |
12
|
mpteq2dv |
⊢ ( 𝑓 = 𝑔 → ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) = ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) |
14 |
13
|
oveq2d |
⊢ ( 𝑓 = 𝑔 → ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) ) |
15 |
14
|
eqeq2d |
⊢ ( 𝑓 = 𝑔 → ( 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ↔ 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) ) ) |
16 |
15
|
cbvrexvw |
⊢ ( ∃ 𝑓 ∈ ( 𝐷 ↑m { 0 } ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ↔ ∃ 𝑔 ∈ ( 𝐷 ↑m { 0 } ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) ) |
17 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
18 |
17
|
anim2i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
19 |
18
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
20 |
19
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑔 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
21 |
|
simplr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑔 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) ) → 𝑔 ∈ ( 𝐷 ↑m { 0 } ) ) |
22 |
|
simpr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑔 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) ) → 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) ) |
23 |
|
eqid |
⊢ ( 0g ‘ 𝐴 ) = ( 0g ‘ 𝐴 ) |
24 |
|
eqid |
⊢ ( 𝑙 ∈ ( 0 ... 1 ) ↦ if ( 𝑙 = 0 , ( 𝑔 ‘ 0 ) , ( 0g ‘ 𝐴 ) ) ) = ( 𝑙 ∈ ( 0 ... 1 ) ↦ if ( 𝑙 = 0 , ( 𝑔 ‘ 0 ) , ( 0g ‘ 𝐴 ) ) ) |
25 |
1 2 3 4 5 6 7 8 9 23 24
|
pmatcollpw3fi1lem1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑔 ∈ ( 𝐷 ↑m { 0 } ) ∧ 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) ) → 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 1 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( ( 𝑙 ∈ ( 0 ... 1 ) ↦ if ( 𝑙 = 0 , ( 𝑔 ‘ 0 ) , ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) ) ) |
26 |
20 21 22 25
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑔 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) ) → 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 1 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( ( 𝑙 ∈ ( 0 ... 1 ) ↦ if ( 𝑙 = 0 , ( 𝑔 ‘ 0 ) , ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) ) ) |
27 |
|
1nn |
⊢ 1 ∈ ℕ |
28 |
27
|
a1i |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑔 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) ) ∧ 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 1 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( ( 𝑙 ∈ ( 0 ... 1 ) ↦ if ( 𝑙 = 0 , ( 𝑔 ‘ 0 ) , ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) ) ) → 1 ∈ ℕ ) |
29 |
|
oveq2 |
⊢ ( 𝑠 = 1 → ( 0 ... 𝑠 ) = ( 0 ... 1 ) ) |
30 |
29
|
oveq2d |
⊢ ( 𝑠 = 1 → ( 𝐷 ↑m ( 0 ... 𝑠 ) ) = ( 𝐷 ↑m ( 0 ... 1 ) ) ) |
31 |
29
|
mpteq1d |
⊢ ( 𝑠 = 1 → ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) = ( 𝑛 ∈ ( 0 ... 1 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) |
32 |
31
|
oveq2d |
⊢ ( 𝑠 = 1 → ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 1 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) |
33 |
32
|
eqeq2d |
⊢ ( 𝑠 = 1 → ( 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ↔ 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 1 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) |
34 |
30 33
|
rexeqbidv |
⊢ ( 𝑠 = 1 → ( ∃ 𝑓 ∈ ( 𝐷 ↑m ( 0 ... 𝑠 ) ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ↔ ∃ 𝑓 ∈ ( 𝐷 ↑m ( 0 ... 1 ) ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 1 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) |
35 |
34
|
adantl |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑔 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) ) ∧ 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 1 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( ( 𝑙 ∈ ( 0 ... 1 ) ↦ if ( 𝑙 = 0 , ( 𝑔 ‘ 0 ) , ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) ) ) ∧ 𝑠 = 1 ) → ( ∃ 𝑓 ∈ ( 𝐷 ↑m ( 0 ... 𝑠 ) ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ↔ ∃ 𝑓 ∈ ( 𝐷 ↑m ( 0 ... 1 ) ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 1 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) |
36 |
|
elmapi |
⊢ ( 𝑔 ∈ ( 𝐷 ↑m { 0 } ) → 𝑔 : { 0 } ⟶ 𝐷 ) |
37 |
|
c0ex |
⊢ 0 ∈ V |
38 |
37
|
snid |
⊢ 0 ∈ { 0 } |
39 |
38
|
a1i |
⊢ ( 𝑙 ∈ ( 0 ... 1 ) → 0 ∈ { 0 } ) |
40 |
|
ffvelrn |
⊢ ( ( 𝑔 : { 0 } ⟶ 𝐷 ∧ 0 ∈ { 0 } ) → ( 𝑔 ‘ 0 ) ∈ 𝐷 ) |
41 |
39 40
|
sylan2 |
⊢ ( ( 𝑔 : { 0 } ⟶ 𝐷 ∧ 𝑙 ∈ ( 0 ... 1 ) ) → ( 𝑔 ‘ 0 ) ∈ 𝐷 ) |
42 |
41
|
ex |
⊢ ( 𝑔 : { 0 } ⟶ 𝐷 → ( 𝑙 ∈ ( 0 ... 1 ) → ( 𝑔 ‘ 0 ) ∈ 𝐷 ) ) |
43 |
36 42
|
syl |
⊢ ( 𝑔 ∈ ( 𝐷 ↑m { 0 } ) → ( 𝑙 ∈ ( 0 ... 1 ) → ( 𝑔 ‘ 0 ) ∈ 𝐷 ) ) |
44 |
43
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑔 ∈ ( 𝐷 ↑m { 0 } ) ) → ( 𝑙 ∈ ( 0 ... 1 ) → ( 𝑔 ‘ 0 ) ∈ 𝐷 ) ) |
45 |
44
|
imp |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑔 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑙 ∈ ( 0 ... 1 ) ) → ( 𝑔 ‘ 0 ) ∈ 𝐷 ) |
46 |
8
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
47 |
17 46
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐴 ∈ Ring ) |
48 |
47
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝐴 ∈ Ring ) |
49 |
9 23
|
ring0cl |
⊢ ( 𝐴 ∈ Ring → ( 0g ‘ 𝐴 ) ∈ 𝐷 ) |
50 |
48 49
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 0g ‘ 𝐴 ) ∈ 𝐷 ) |
51 |
50
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑔 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑙 ∈ ( 0 ... 1 ) ) → ( 0g ‘ 𝐴 ) ∈ 𝐷 ) |
52 |
45 51
|
ifcld |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑔 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑙 ∈ ( 0 ... 1 ) ) → if ( 𝑙 = 0 , ( 𝑔 ‘ 0 ) , ( 0g ‘ 𝐴 ) ) ∈ 𝐷 ) |
53 |
52
|
fmpttd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑔 ∈ ( 𝐷 ↑m { 0 } ) ) → ( 𝑙 ∈ ( 0 ... 1 ) ↦ if ( 𝑙 = 0 , ( 𝑔 ‘ 0 ) , ( 0g ‘ 𝐴 ) ) ) : ( 0 ... 1 ) ⟶ 𝐷 ) |
54 |
9
|
fvexi |
⊢ 𝐷 ∈ V |
55 |
|
ovex |
⊢ ( 0 ... 1 ) ∈ V |
56 |
54 55
|
pm3.2i |
⊢ ( 𝐷 ∈ V ∧ ( 0 ... 1 ) ∈ V ) |
57 |
|
elmapg |
⊢ ( ( 𝐷 ∈ V ∧ ( 0 ... 1 ) ∈ V ) → ( ( 𝑙 ∈ ( 0 ... 1 ) ↦ if ( 𝑙 = 0 , ( 𝑔 ‘ 0 ) , ( 0g ‘ 𝐴 ) ) ) ∈ ( 𝐷 ↑m ( 0 ... 1 ) ) ↔ ( 𝑙 ∈ ( 0 ... 1 ) ↦ if ( 𝑙 = 0 , ( 𝑔 ‘ 0 ) , ( 0g ‘ 𝐴 ) ) ) : ( 0 ... 1 ) ⟶ 𝐷 ) ) |
58 |
56 57
|
mp1i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑔 ∈ ( 𝐷 ↑m { 0 } ) ) → ( ( 𝑙 ∈ ( 0 ... 1 ) ↦ if ( 𝑙 = 0 , ( 𝑔 ‘ 0 ) , ( 0g ‘ 𝐴 ) ) ) ∈ ( 𝐷 ↑m ( 0 ... 1 ) ) ↔ ( 𝑙 ∈ ( 0 ... 1 ) ↦ if ( 𝑙 = 0 , ( 𝑔 ‘ 0 ) , ( 0g ‘ 𝐴 ) ) ) : ( 0 ... 1 ) ⟶ 𝐷 ) ) |
59 |
53 58
|
mpbird |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑔 ∈ ( 𝐷 ↑m { 0 } ) ) → ( 𝑙 ∈ ( 0 ... 1 ) ↦ if ( 𝑙 = 0 , ( 𝑔 ‘ 0 ) , ( 0g ‘ 𝐴 ) ) ) ∈ ( 𝐷 ↑m ( 0 ... 1 ) ) ) |
60 |
59
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑔 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) ) → ( 𝑙 ∈ ( 0 ... 1 ) ↦ if ( 𝑙 = 0 , ( 𝑔 ‘ 0 ) , ( 0g ‘ 𝐴 ) ) ) ∈ ( 𝐷 ↑m ( 0 ... 1 ) ) ) |
61 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑙 ∈ ( 0 ... 1 ) ↦ if ( 𝑙 = 0 , ( 𝑔 ‘ 0 ) , ( 0g ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑛 ) = ( ( 𝑙 ∈ ( 0 ... 1 ) ↦ if ( 𝑙 = 0 , ( 𝑔 ‘ 0 ) , ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) |
62 |
61
|
fveq2d |
⊢ ( 𝑓 = ( 𝑙 ∈ ( 0 ... 1 ) ↦ if ( 𝑙 = 0 , ( 𝑔 ‘ 0 ) , ( 0g ‘ 𝐴 ) ) ) → ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) = ( 𝑇 ‘ ( ( 𝑙 ∈ ( 0 ... 1 ) ↦ if ( 𝑙 = 0 , ( 𝑔 ‘ 0 ) , ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) |
63 |
62
|
oveq2d |
⊢ ( 𝑓 = ( 𝑙 ∈ ( 0 ... 1 ) ↦ if ( 𝑙 = 0 , ( 𝑔 ‘ 0 ) , ( 0g ‘ 𝐴 ) ) ) → ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) = ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( ( 𝑙 ∈ ( 0 ... 1 ) ↦ if ( 𝑙 = 0 , ( 𝑔 ‘ 0 ) , ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) |
64 |
63
|
mpteq2dv |
⊢ ( 𝑓 = ( 𝑙 ∈ ( 0 ... 1 ) ↦ if ( 𝑙 = 0 , ( 𝑔 ‘ 0 ) , ( 0g ‘ 𝐴 ) ) ) → ( 𝑛 ∈ ( 0 ... 1 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) = ( 𝑛 ∈ ( 0 ... 1 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( ( 𝑙 ∈ ( 0 ... 1 ) ↦ if ( 𝑙 = 0 , ( 𝑔 ‘ 0 ) , ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) ) |
65 |
64
|
oveq2d |
⊢ ( 𝑓 = ( 𝑙 ∈ ( 0 ... 1 ) ↦ if ( 𝑙 = 0 , ( 𝑔 ‘ 0 ) , ( 0g ‘ 𝐴 ) ) ) → ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 1 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 1 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( ( 𝑙 ∈ ( 0 ... 1 ) ↦ if ( 𝑙 = 0 , ( 𝑔 ‘ 0 ) , ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) ) ) |
66 |
65
|
eqeq2d |
⊢ ( 𝑓 = ( 𝑙 ∈ ( 0 ... 1 ) ↦ if ( 𝑙 = 0 , ( 𝑔 ‘ 0 ) , ( 0g ‘ 𝐴 ) ) ) → ( 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 1 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ↔ 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 1 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( ( 𝑙 ∈ ( 0 ... 1 ) ↦ if ( 𝑙 = 0 , ( 𝑔 ‘ 0 ) , ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) ) ) ) |
67 |
66
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑔 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) ) ∧ 𝑓 = ( 𝑙 ∈ ( 0 ... 1 ) ↦ if ( 𝑙 = 0 , ( 𝑔 ‘ 0 ) , ( 0g ‘ 𝐴 ) ) ) ) → ( 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 1 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ↔ 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 1 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( ( 𝑙 ∈ ( 0 ... 1 ) ↦ if ( 𝑙 = 0 , ( 𝑔 ‘ 0 ) , ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) ) ) ) |
68 |
60 67
|
rspcedv |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑔 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) ) → ( 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 1 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( ( 𝑙 ∈ ( 0 ... 1 ) ↦ if ( 𝑙 = 0 , ( 𝑔 ‘ 0 ) , ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) ) → ∃ 𝑓 ∈ ( 𝐷 ↑m ( 0 ... 1 ) ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 1 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) |
69 |
68
|
imp |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑔 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) ) ∧ 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 1 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( ( 𝑙 ∈ ( 0 ... 1 ) ↦ if ( 𝑙 = 0 , ( 𝑔 ‘ 0 ) , ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) ) ) → ∃ 𝑓 ∈ ( 𝐷 ↑m ( 0 ... 1 ) ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 1 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) |
70 |
28 35 69
|
rspcedvd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑔 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) ) ∧ 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 1 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( ( 𝑙 ∈ ( 0 ... 1 ) ↦ if ( 𝑙 = 0 , ( 𝑔 ‘ 0 ) , ( 0g ‘ 𝐴 ) ) ) ‘ 𝑛 ) ) ) ) ) ) → ∃ 𝑠 ∈ ℕ ∃ 𝑓 ∈ ( 𝐷 ↑m ( 0 ... 𝑠 ) ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) |
71 |
26 70
|
mpdan |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑔 ∈ ( 𝐷 ↑m { 0 } ) ) ∧ 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) ) → ∃ 𝑠 ∈ ℕ ∃ 𝑓 ∈ ( 𝐷 ↑m ( 0 ... 𝑠 ) ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) |
72 |
71
|
rexlimdva2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ∃ 𝑔 ∈ ( 𝐷 ↑m { 0 } ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) → ∃ 𝑠 ∈ ℕ ∃ 𝑓 ∈ ( 𝐷 ↑m ( 0 ... 𝑠 ) ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) |
73 |
16 72
|
syl5bi |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ∃ 𝑓 ∈ ( 𝐷 ↑m { 0 } ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ { 0 } ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) → ∃ 𝑠 ∈ ℕ ∃ 𝑓 ∈ ( 𝐷 ↑m ( 0 ... 𝑠 ) ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) |