Step |
Hyp |
Ref |
Expression |
1 |
|
pmatcollpw.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
pmatcollpw.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
3 |
|
pmatcollpw.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
4 |
|
pmatcollpw.m |
⊢ ∗ = ( ·𝑠 ‘ 𝐶 ) |
5 |
|
pmatcollpw.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
6 |
|
pmatcollpw.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
7 |
|
pmatcollpw.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
8 |
|
pmatcollpw3.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
9 |
|
pmatcollpw3.d |
⊢ 𝐷 = ( Base ‘ 𝐴 ) |
10 |
|
dmeq |
⊢ ( 𝑥 = 𝑦 → dom 𝑥 = dom 𝑦 ) |
11 |
10
|
dmeqd |
⊢ ( 𝑥 = 𝑦 → dom dom 𝑥 = dom dom 𝑦 ) |
12 |
|
oveq |
⊢ ( 𝑥 = 𝑦 → ( 𝑖 𝑥 𝑗 ) = ( 𝑖 𝑦 𝑗 ) ) |
13 |
12
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) = ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ) |
14 |
13
|
fveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) = ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 ) ) |
15 |
11 11 14
|
mpoeq123dv |
⊢ ( 𝑥 = 𝑦 → ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) = ( 𝑖 ∈ dom dom 𝑦 , 𝑗 ∈ dom dom 𝑦 ↦ ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 ) ) ) |
16 |
|
fveq2 |
⊢ ( 𝑘 = 𝑙 → ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 ) = ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) ) |
17 |
16
|
mpoeq3dv |
⊢ ( 𝑘 = 𝑙 → ( 𝑖 ∈ dom dom 𝑦 , 𝑗 ∈ dom dom 𝑦 ↦ ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 ) ) = ( 𝑖 ∈ dom dom 𝑦 , 𝑗 ∈ dom dom 𝑦 ↦ ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) ) ) |
18 |
15 17
|
cbvmpov |
⊢ ( 𝑥 ∈ 𝐵 , 𝑘 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) = ( 𝑦 ∈ 𝐵 , 𝑙 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑦 , 𝑗 ∈ dom dom 𝑦 ↦ ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) ) ) |
19 |
|
dmexg |
⊢ ( 𝑦 ∈ 𝐵 → dom 𝑦 ∈ V ) |
20 |
19
|
dmexd |
⊢ ( 𝑦 ∈ 𝐵 → dom dom 𝑦 ∈ V ) |
21 |
20 20
|
jca |
⊢ ( 𝑦 ∈ 𝐵 → ( dom dom 𝑦 ∈ V ∧ dom dom 𝑦 ∈ V ) ) |
22 |
21
|
ad2antrl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑙 ∈ 𝐼 ) ) → ( dom dom 𝑦 ∈ V ∧ dom dom 𝑦 ∈ V ) ) |
23 |
|
mpoexga |
⊢ ( ( dom dom 𝑦 ∈ V ∧ dom dom 𝑦 ∈ V ) → ( 𝑖 ∈ dom dom 𝑦 , 𝑗 ∈ dom dom 𝑦 ↦ ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) ) ∈ V ) |
24 |
22 23
|
syl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑙 ∈ 𝐼 ) ) → ( 𝑖 ∈ dom dom 𝑦 , 𝑗 ∈ dom dom 𝑦 ↦ ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) ) ∈ V ) |
25 |
24
|
ralrimivva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑙 ∈ 𝐼 ( 𝑖 ∈ dom dom 𝑦 , 𝑗 ∈ dom dom 𝑦 ↦ ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) ) ∈ V ) |
26 |
|
simprr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) → 𝐼 ≠ ∅ ) |
27 |
|
nn0ex |
⊢ ℕ0 ∈ V |
28 |
27
|
ssex |
⊢ ( 𝐼 ⊆ ℕ0 → 𝐼 ∈ V ) |
29 |
28
|
ad2antrl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) → 𝐼 ∈ V ) |
30 |
|
simp3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑀 ∈ 𝐵 ) |
31 |
30
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) → 𝑀 ∈ 𝐵 ) |
32 |
18 25 26 29 31
|
mpocurryvald |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) → ( curry ( 𝑥 ∈ 𝐵 , 𝑘 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) = ( 𝑙 ∈ 𝐼 ↦ ⦋ 𝑀 / 𝑦 ⦌ ( 𝑖 ∈ dom dom 𝑦 , 𝑗 ∈ dom dom 𝑦 ↦ ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) ) ) ) |
33 |
|
fveq2 |
⊢ ( 𝑙 = 𝑘 → ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) = ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 ) ) |
34 |
33
|
mpoeq3dv |
⊢ ( 𝑙 = 𝑘 → ( 𝑖 ∈ dom dom 𝑦 , 𝑗 ∈ dom dom 𝑦 ↦ ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) ) = ( 𝑖 ∈ dom dom 𝑦 , 𝑗 ∈ dom dom 𝑦 ↦ ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 ) ) ) |
35 |
34
|
csbeq2dv |
⊢ ( 𝑙 = 𝑘 → ⦋ 𝑀 / 𝑦 ⦌ ( 𝑖 ∈ dom dom 𝑦 , 𝑗 ∈ dom dom 𝑦 ↦ ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) ) = ⦋ 𝑀 / 𝑦 ⦌ ( 𝑖 ∈ dom dom 𝑦 , 𝑗 ∈ dom dom 𝑦 ↦ ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 ) ) ) |
36 |
|
eqcom |
⊢ ( 𝑥 = 𝑦 ↔ 𝑦 = 𝑥 ) |
37 |
|
eqcom |
⊢ ( ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) = ( 𝑖 ∈ dom dom 𝑦 , 𝑗 ∈ dom dom 𝑦 ↦ ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 ) ) ↔ ( 𝑖 ∈ dom dom 𝑦 , 𝑗 ∈ dom dom 𝑦 ↦ ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 ) ) = ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) |
38 |
15 36 37
|
3imtr3i |
⊢ ( 𝑦 = 𝑥 → ( 𝑖 ∈ dom dom 𝑦 , 𝑗 ∈ dom dom 𝑦 ↦ ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 ) ) = ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) |
39 |
38
|
cbvcsbv |
⊢ ⦋ 𝑀 / 𝑦 ⦌ ( 𝑖 ∈ dom dom 𝑦 , 𝑗 ∈ dom dom 𝑦 ↦ ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 ) ) = ⦋ 𝑀 / 𝑥 ⦌ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) |
40 |
35 39
|
eqtrdi |
⊢ ( 𝑙 = 𝑘 → ⦋ 𝑀 / 𝑦 ⦌ ( 𝑖 ∈ dom dom 𝑦 , 𝑗 ∈ dom dom 𝑦 ↦ ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) ) = ⦋ 𝑀 / 𝑥 ⦌ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) |
41 |
40
|
cbvmptv |
⊢ ( 𝑙 ∈ 𝐼 ↦ ⦋ 𝑀 / 𝑦 ⦌ ( 𝑖 ∈ dom dom 𝑦 , 𝑗 ∈ dom dom 𝑦 ↦ ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) ) ) = ( 𝑘 ∈ 𝐼 ↦ ⦋ 𝑀 / 𝑥 ⦌ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) |
42 |
32 41
|
eqtrdi |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) → ( curry ( 𝑥 ∈ 𝐵 , 𝑘 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) = ( 𝑘 ∈ 𝐼 ↦ ⦋ 𝑀 / 𝑥 ⦌ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
43 |
|
dmeq |
⊢ ( 𝑥 = 𝑀 → dom 𝑥 = dom 𝑀 ) |
44 |
43
|
dmeqd |
⊢ ( 𝑥 = 𝑀 → dom dom 𝑥 = dom dom 𝑀 ) |
45 |
|
oveq |
⊢ ( 𝑥 = 𝑀 → ( 𝑖 𝑥 𝑗 ) = ( 𝑖 𝑀 𝑗 ) ) |
46 |
45
|
fveq2d |
⊢ ( 𝑥 = 𝑀 → ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) = ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ) |
47 |
46
|
fveq1d |
⊢ ( 𝑥 = 𝑀 → ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) = ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ) |
48 |
44 44 47
|
mpoeq123dv |
⊢ ( 𝑥 = 𝑀 → ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) = ( 𝑖 ∈ dom dom 𝑀 , 𝑗 ∈ dom dom 𝑀 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ) ) |
49 |
48
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑥 = 𝑀 ) → ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) = ( 𝑖 ∈ dom dom 𝑀 , 𝑗 ∈ dom dom 𝑀 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ) ) |
50 |
30 49
|
csbied |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ⦋ 𝑀 / 𝑥 ⦌ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) = ( 𝑖 ∈ dom dom 𝑀 , 𝑗 ∈ dom dom 𝑀 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ) ) |
51 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
52 |
2 51 3
|
matbas2i |
⊢ ( 𝑀 ∈ 𝐵 → 𝑀 ∈ ( ( Base ‘ 𝑃 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
53 |
|
elmapi |
⊢ ( 𝑀 ∈ ( ( Base ‘ 𝑃 ) ↑m ( 𝑁 × 𝑁 ) ) → 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑃 ) ) |
54 |
|
fdm |
⊢ ( 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑃 ) → dom 𝑀 = ( 𝑁 × 𝑁 ) ) |
55 |
54
|
dmeqd |
⊢ ( 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑃 ) → dom dom 𝑀 = dom ( 𝑁 × 𝑁 ) ) |
56 |
|
dmxpid |
⊢ dom ( 𝑁 × 𝑁 ) = 𝑁 |
57 |
55 56
|
eqtr2di |
⊢ ( 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑃 ) → 𝑁 = dom dom 𝑀 ) |
58 |
52 53 57
|
3syl |
⊢ ( 𝑀 ∈ 𝐵 → 𝑁 = dom dom 𝑀 ) |
59 |
58
|
3ad2ant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑁 = dom dom 𝑀 ) |
60 |
59
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑚 = 𝑀 ) → 𝑁 = dom dom 𝑀 ) |
61 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑚 = 𝑀 ) → 𝑚 = 𝑀 ) |
62 |
61
|
oveqd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑚 = 𝑀 ) → ( 𝑖 𝑚 𝑗 ) = ( 𝑖 𝑀 𝑗 ) ) |
63 |
62
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑚 = 𝑀 ) → ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) = ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ) |
64 |
63
|
fveq1d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑚 = 𝑀 ) → ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) = ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ) |
65 |
60 60 64
|
mpoeq123dv |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑚 = 𝑀 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) = ( 𝑖 ∈ dom dom 𝑀 , 𝑗 ∈ dom dom 𝑀 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ) ) |
66 |
30 65
|
csbied |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ⦋ 𝑀 / 𝑚 ⦌ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) = ( 𝑖 ∈ dom dom 𝑀 , 𝑗 ∈ dom dom 𝑀 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ) ) |
67 |
50 66
|
eqtr4d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ⦋ 𝑀 / 𝑥 ⦌ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) = ⦋ 𝑀 / 𝑚 ⦌ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) |
68 |
67
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) → ⦋ 𝑀 / 𝑥 ⦌ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) = ⦋ 𝑀 / 𝑚 ⦌ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) |
69 |
68
|
mpteq2dv |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) → ( 𝑘 ∈ 𝐼 ↦ ⦋ 𝑀 / 𝑥 ⦌ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝐼 ↦ ⦋ 𝑀 / 𝑚 ⦌ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
70 |
42 69
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) → ( curry ( 𝑥 ∈ 𝐵 , 𝑘 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) = ( 𝑘 ∈ 𝐼 ↦ ⦋ 𝑀 / 𝑚 ⦌ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
71 |
|
oveq |
⊢ ( 𝑚 = 𝑀 → ( 𝑖 𝑚 𝑗 ) = ( 𝑖 𝑀 𝑗 ) ) |
72 |
71
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑚 = 𝑀 ) → ( 𝑖 𝑚 𝑗 ) = ( 𝑖 𝑀 𝑗 ) ) |
73 |
72
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑚 = 𝑀 ) → ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) = ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ) |
74 |
73
|
fveq1d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑚 = 𝑀 ) → ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) = ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ) |
75 |
74
|
mpoeq3dv |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑚 = 𝑀 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ) ) |
76 |
30 75
|
csbied |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ⦋ 𝑀 / 𝑚 ⦌ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ) ) |
77 |
76
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ 𝐼 ) → ⦋ 𝑀 / 𝑚 ⦌ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ) ) |
78 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
79 |
|
simpll1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ 𝐼 ) → 𝑁 ∈ Fin ) |
80 |
|
simpll2 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ 𝐼 ) → 𝑅 ∈ CRing ) |
81 |
|
simp2 |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ∈ 𝑁 ) |
82 |
|
simp3 |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑗 ∈ 𝑁 ) |
83 |
31
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ 𝐼 ) → 𝑀 ∈ 𝐵 ) |
84 |
83
|
3ad2ant1 |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑀 ∈ 𝐵 ) |
85 |
2 51 3 81 82 84
|
matecld |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 𝑀 𝑗 ) ∈ ( Base ‘ 𝑃 ) ) |
86 |
|
ssel |
⊢ ( 𝐼 ⊆ ℕ0 → ( 𝑘 ∈ 𝐼 → 𝑘 ∈ ℕ0 ) ) |
87 |
86
|
ad2antrl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) → ( 𝑘 ∈ 𝐼 → 𝑘 ∈ ℕ0 ) ) |
88 |
87
|
imp |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ 𝐼 ) → 𝑘 ∈ ℕ0 ) |
89 |
88
|
3ad2ant1 |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑘 ∈ ℕ0 ) |
90 |
|
eqid |
⊢ ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) = ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) |
91 |
90 51 1 78
|
coe1fvalcl |
⊢ ( ( ( 𝑖 𝑀 𝑗 ) ∈ ( Base ‘ 𝑃 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
92 |
85 89 91
|
syl2anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
93 |
8 78 9 79 80 92
|
matbas2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ) ∈ 𝐷 ) |
94 |
77 93
|
eqeltrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑘 ∈ 𝐼 ) → ⦋ 𝑀 / 𝑚 ⦌ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ∈ 𝐷 ) |
95 |
94
|
fmpttd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) → ( 𝑘 ∈ 𝐼 ↦ ⦋ 𝑀 / 𝑚 ⦌ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) : 𝐼 ⟶ 𝐷 ) |
96 |
9
|
fvexi |
⊢ 𝐷 ∈ V |
97 |
96
|
a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝐷 ∈ V ) |
98 |
28
|
adantr |
⊢ ( ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) → 𝐼 ∈ V ) |
99 |
|
elmapg |
⊢ ( ( 𝐷 ∈ V ∧ 𝐼 ∈ V ) → ( ( 𝑘 ∈ 𝐼 ↦ ⦋ 𝑀 / 𝑚 ⦌ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) ∈ ( 𝐷 ↑m 𝐼 ) ↔ ( 𝑘 ∈ 𝐼 ↦ ⦋ 𝑀 / 𝑚 ⦌ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) : 𝐼 ⟶ 𝐷 ) ) |
100 |
97 98 99
|
syl2an |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) → ( ( 𝑘 ∈ 𝐼 ↦ ⦋ 𝑀 / 𝑚 ⦌ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) ∈ ( 𝐷 ↑m 𝐼 ) ↔ ( 𝑘 ∈ 𝐼 ↦ ⦋ 𝑀 / 𝑚 ⦌ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) : 𝐼 ⟶ 𝐷 ) ) |
101 |
95 100
|
mpbird |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) → ( 𝑘 ∈ 𝐼 ↦ ⦋ 𝑀 / 𝑚 ⦌ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) ∈ ( 𝐷 ↑m 𝐼 ) ) |
102 |
70 101
|
eqeltrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) → ( curry ( 𝑥 ∈ 𝐵 , 𝑘 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) ∈ ( 𝐷 ↑m 𝐼 ) ) |
103 |
|
fveq1 |
⊢ ( 𝑓 = ( curry ( 𝑥 ∈ 𝐵 , 𝑘 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) → ( 𝑓 ‘ 𝑛 ) = ( ( curry ( 𝑥 ∈ 𝐵 , 𝑘 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) ‘ 𝑛 ) ) |
104 |
103
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑓 = ( curry ( 𝑥 ∈ 𝐵 , 𝑘 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) ) → ( 𝑓 ‘ 𝑛 ) = ( ( curry ( 𝑥 ∈ 𝐵 , 𝑘 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) ‘ 𝑛 ) ) |
105 |
104
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑓 = ( curry ( 𝑥 ∈ 𝐵 , 𝑘 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) ) ∧ 𝑛 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑛 ) = ( ( curry ( 𝑥 ∈ 𝐵 , 𝑘 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) ‘ 𝑛 ) ) |
106 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 , 𝑘 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) = ( 𝑥 ∈ 𝐵 , 𝑘 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) |
107 |
|
dmexg |
⊢ ( 𝑥 ∈ 𝐵 → dom 𝑥 ∈ V ) |
108 |
107
|
dmexd |
⊢ ( 𝑥 ∈ 𝐵 → dom dom 𝑥 ∈ V ) |
109 |
108 108
|
jca |
⊢ ( 𝑥 ∈ 𝐵 → ( dom dom 𝑥 ∈ V ∧ dom dom 𝑥 ∈ V ) ) |
110 |
109
|
ad2antrl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑘 ∈ 𝐼 ) ) → ( dom dom 𝑥 ∈ V ∧ dom dom 𝑥 ∈ V ) ) |
111 |
|
mpoexga |
⊢ ( ( dom dom 𝑥 ∈ V ∧ dom dom 𝑥 ∈ V ) → ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ∈ V ) |
112 |
110 111
|
syl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑘 ∈ 𝐼 ) ) → ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ∈ V ) |
113 |
112
|
ralrimivva |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑘 ∈ 𝐼 ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ∈ V ) |
114 |
29
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → 𝐼 ∈ V ) |
115 |
31
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → 𝑀 ∈ 𝐵 ) |
116 |
|
simpr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → 𝑛 ∈ 𝐼 ) |
117 |
106 113 114 115 116
|
fvmpocurryd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → ( ( curry ( 𝑥 ∈ 𝐵 , 𝑘 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) ‘ 𝑛 ) = ( 𝑀 ( 𝑥 ∈ 𝐵 , 𝑘 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) 𝑛 ) ) |
118 |
|
df-decpmat |
⊢ decompPMat = ( 𝑥 ∈ V , 𝑘 ∈ ℕ0 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) |
119 |
118
|
reseq1i |
⊢ ( decompPMat ↾ ( 𝐵 × 𝐼 ) ) = ( ( 𝑥 ∈ V , 𝑘 ∈ ℕ0 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ↾ ( 𝐵 × 𝐼 ) ) |
120 |
|
ssv |
⊢ 𝐵 ⊆ V |
121 |
120
|
a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝐵 ⊆ V ) |
122 |
|
simpl |
⊢ ( ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) → 𝐼 ⊆ ℕ0 ) |
123 |
121 122
|
anim12i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) → ( 𝐵 ⊆ V ∧ 𝐼 ⊆ ℕ0 ) ) |
124 |
123
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → ( 𝐵 ⊆ V ∧ 𝐼 ⊆ ℕ0 ) ) |
125 |
|
resmpo |
⊢ ( ( 𝐵 ⊆ V ∧ 𝐼 ⊆ ℕ0 ) → ( ( 𝑥 ∈ V , 𝑘 ∈ ℕ0 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ↾ ( 𝐵 × 𝐼 ) ) = ( 𝑥 ∈ 𝐵 , 𝑘 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
126 |
124 125
|
syl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → ( ( 𝑥 ∈ V , 𝑘 ∈ ℕ0 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ↾ ( 𝐵 × 𝐼 ) ) = ( 𝑥 ∈ 𝐵 , 𝑘 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
127 |
119 126
|
eqtr2id |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → ( 𝑥 ∈ 𝐵 , 𝑘 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) = ( decompPMat ↾ ( 𝐵 × 𝐼 ) ) ) |
128 |
127
|
oveqd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → ( 𝑀 ( 𝑥 ∈ 𝐵 , 𝑘 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) 𝑛 ) = ( 𝑀 ( decompPMat ↾ ( 𝐵 × 𝐼 ) ) 𝑛 ) ) |
129 |
117 128
|
eqtrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑛 ∈ 𝐼 ) → ( ( curry ( 𝑥 ∈ 𝐵 , 𝑘 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) ‘ 𝑛 ) = ( 𝑀 ( decompPMat ↾ ( 𝐵 × 𝐼 ) ) 𝑛 ) ) |
130 |
129
|
adantlr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑓 = ( curry ( 𝑥 ∈ 𝐵 , 𝑘 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) ) ∧ 𝑛 ∈ 𝐼 ) → ( ( curry ( 𝑥 ∈ 𝐵 , 𝑘 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) ‘ 𝑛 ) = ( 𝑀 ( decompPMat ↾ ( 𝐵 × 𝐼 ) ) 𝑛 ) ) |
131 |
105 130
|
eqtrd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑓 = ( curry ( 𝑥 ∈ 𝐵 , 𝑘 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) ) ∧ 𝑛 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑛 ) = ( 𝑀 ( decompPMat ↾ ( 𝐵 × 𝐼 ) ) 𝑛 ) ) |
132 |
131
|
fveq2d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑓 = ( curry ( 𝑥 ∈ 𝐵 , 𝑘 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) ) ∧ 𝑛 ∈ 𝐼 ) → ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) = ( 𝑇 ‘ ( 𝑀 ( decompPMat ↾ ( 𝐵 × 𝐼 ) ) 𝑛 ) ) ) |
133 |
30
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑓 = ( curry ( 𝑥 ∈ 𝐵 , 𝑘 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) ) → 𝑀 ∈ 𝐵 ) |
134 |
|
ovres |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑛 ∈ 𝐼 ) → ( 𝑀 ( decompPMat ↾ ( 𝐵 × 𝐼 ) ) 𝑛 ) = ( 𝑀 decompPMat 𝑛 ) ) |
135 |
133 134
|
sylan |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑓 = ( curry ( 𝑥 ∈ 𝐵 , 𝑘 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) ) ∧ 𝑛 ∈ 𝐼 ) → ( 𝑀 ( decompPMat ↾ ( 𝐵 × 𝐼 ) ) 𝑛 ) = ( 𝑀 decompPMat 𝑛 ) ) |
136 |
135
|
fveq2d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑓 = ( curry ( 𝑥 ∈ 𝐵 , 𝑘 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) ) ∧ 𝑛 ∈ 𝐼 ) → ( 𝑇 ‘ ( 𝑀 ( decompPMat ↾ ( 𝐵 × 𝐼 ) ) 𝑛 ) ) = ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) |
137 |
132 136
|
eqtrd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑓 = ( curry ( 𝑥 ∈ 𝐵 , 𝑘 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) ) ∧ 𝑛 ∈ 𝐼 ) → ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) = ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) |
138 |
137
|
oveq2d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑓 = ( curry ( 𝑥 ∈ 𝐵 , 𝑘 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) ) ∧ 𝑛 ∈ 𝐼 ) → ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) = ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ) |
139 |
138
|
mpteq2dva |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑓 = ( curry ( 𝑥 ∈ 𝐵 , 𝑘 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) ) → ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) = ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ) ) |
140 |
139
|
oveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑓 = ( curry ( 𝑥 ∈ 𝐵 , 𝑘 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) ) → ( 𝐶 Σg ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) = ( 𝐶 Σg ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ) ) ) |
141 |
140
|
eqeq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) ∧ 𝑓 = ( curry ( 𝑥 ∈ 𝐵 , 𝑘 ∈ 𝐼 ↦ ( 𝑖 ∈ dom dom 𝑥 , 𝑗 ∈ dom dom 𝑥 ↦ ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) ) → ( 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ↔ 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ) ) ) ) |
142 |
102 141
|
rspcedv |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 ⊆ ℕ0 ∧ 𝐼 ≠ ∅ ) ) → ( 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ) ) → ∃ 𝑓 ∈ ( 𝐷 ↑m 𝐼 ) 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) ) |