| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pmatcollpw.p | 
							⊢ 𝑃  =  ( Poly1 ‘ 𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							pmatcollpw.c | 
							⊢ 𝐶  =  ( 𝑁  Mat  𝑃 )  | 
						
						
							| 3 | 
							
								
							 | 
							pmatcollpw.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐶 )  | 
						
						
							| 4 | 
							
								
							 | 
							pmatcollpw.m | 
							⊢  ∗   =  (  ·𝑠  ‘ 𝐶 )  | 
						
						
							| 5 | 
							
								
							 | 
							pmatcollpw.e | 
							⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							pmatcollpw.x | 
							⊢ 𝑋  =  ( var1 ‘ 𝑅 )  | 
						
						
							| 7 | 
							
								
							 | 
							pmatcollpw.t | 
							⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 )  | 
						
						
							| 8 | 
							
								
							 | 
							pmatcollpw3.a | 
							⊢ 𝐴  =  ( 𝑁  Mat  𝑅 )  | 
						
						
							| 9 | 
							
								
							 | 
							pmatcollpw3.d | 
							⊢ 𝐷  =  ( Base ‘ 𝐴 )  | 
						
						
							| 10 | 
							
								
							 | 
							dmeq | 
							⊢ ( 𝑥  =  𝑦  →  dom  𝑥  =  dom  𝑦 )  | 
						
						
							| 11 | 
							
								10
							 | 
							dmeqd | 
							⊢ ( 𝑥  =  𝑦  →  dom  dom  𝑥  =  dom  dom  𝑦 )  | 
						
						
							| 12 | 
							
								
							 | 
							oveq | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝑖 𝑥 𝑗 )  =  ( 𝑖 𝑦 𝑗 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							fveq2d | 
							⊢ ( 𝑥  =  𝑦  →  ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) )  =  ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							fveq1d | 
							⊢ ( 𝑥  =  𝑦  →  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 )  =  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 ) )  | 
						
						
							| 15 | 
							
								11 11 14
							 | 
							mpoeq123dv | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝑙  →  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 )  =  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							mpoeq3dv | 
							⊢ ( 𝑘  =  𝑙  →  ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) ) )  | 
						
						
							| 18 | 
							
								15 17
							 | 
							cbvmpov | 
							⊢ ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) )  =  ( 𝑦  ∈  𝐵 ,  𝑙  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							dmexg | 
							⊢ ( 𝑦  ∈  𝐵  →  dom  𝑦  ∈  V )  | 
						
						
							| 20 | 
							
								19
							 | 
							dmexd | 
							⊢ ( 𝑦  ∈  𝐵  →  dom  dom  𝑦  ∈  V )  | 
						
						
							| 21 | 
							
								20 20
							 | 
							jca | 
							⊢ ( 𝑦  ∈  𝐵  →  ( dom  dom  𝑦  ∈  V  ∧  dom  dom  𝑦  ∈  V ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							ad2antrl | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑙  ∈  𝐼 ) )  →  ( dom  dom  𝑦  ∈  V  ∧  dom  dom  𝑦  ∈  V ) )  | 
						
						
							| 23 | 
							
								
							 | 
							mpoexga | 
							⊢ ( ( dom  dom  𝑦  ∈  V  ∧  dom  dom  𝑦  ∈  V )  →  ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) )  ∈  V )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							syl | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑙  ∈  𝐼 ) )  →  ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) )  ∈  V )  | 
						
						
							| 25 | 
							
								24
							 | 
							ralrimivva | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  →  ∀ 𝑦  ∈  𝐵 ∀ 𝑙  ∈  𝐼 ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) )  ∈  V )  | 
						
						
							| 26 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  →  𝐼  ≠  ∅ )  | 
						
						
							| 27 | 
							
								
							 | 
							nn0ex | 
							⊢ ℕ0  ∈  V  | 
						
						
							| 28 | 
							
								27
							 | 
							ssex | 
							⊢ ( 𝐼  ⊆  ℕ0  →  𝐼  ∈  V )  | 
						
						
							| 29 | 
							
								28
							 | 
							ad2antrl | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  →  𝐼  ∈  V )  | 
						
						
							| 30 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑀  ∈  𝐵 )  | 
						
						
							| 31 | 
							
								30
							 | 
							adantr | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  →  𝑀  ∈  𝐵 )  | 
						
						
							| 32 | 
							
								18 25 26 29 31
							 | 
							mpocurryvald | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  →  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 )  =  ( 𝑙  ∈  𝐼  ↦  ⦋ 𝑀  /  𝑦 ⦌ ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑙  =  𝑘  →  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 )  =  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							mpoeq3dv | 
							⊢ ( 𝑙  =  𝑘  →  ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) )  =  ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 ) ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							csbeq2dv | 
							⊢ ( 𝑙  =  𝑘  →  ⦋ 𝑀  /  𝑦 ⦌ ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) )  =  ⦋ 𝑀  /  𝑦 ⦌ ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 ) ) )  | 
						
						
							| 36 | 
							
								
							 | 
							eqcom | 
							⊢ ( 𝑥  =  𝑦  ↔  𝑦  =  𝑥 )  | 
						
						
							| 37 | 
							
								
							 | 
							eqcom | 
							⊢ ( ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 ) )  ↔  ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) )  | 
						
						
							| 38 | 
							
								15 36 37
							 | 
							3imtr3i | 
							⊢ ( 𝑦  =  𝑥  →  ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							cbvcsbv | 
							⊢ ⦋ 𝑀  /  𝑦 ⦌ ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑘 ) )  =  ⦋ 𝑀  /  𝑥 ⦌ ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) )  | 
						
						
							| 40 | 
							
								35 39
							 | 
							eqtrdi | 
							⊢ ( 𝑙  =  𝑘  →  ⦋ 𝑀  /  𝑦 ⦌ ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) )  =  ⦋ 𝑀  /  𝑥 ⦌ ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							cbvmptv | 
							⊢ ( 𝑙  ∈  𝐼  ↦  ⦋ 𝑀  /  𝑦 ⦌ ( 𝑖  ∈  dom  dom  𝑦 ,  𝑗  ∈  dom  dom  𝑦  ↦  ( ( coe1 ‘ ( 𝑖 𝑦 𝑗 ) ) ‘ 𝑙 ) ) )  =  ( 𝑘  ∈  𝐼  ↦  ⦋ 𝑀  /  𝑥 ⦌ ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) )  | 
						
						
							| 42 | 
							
								32 41
							 | 
							eqtrdi | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  →  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 )  =  ( 𝑘  ∈  𝐼  ↦  ⦋ 𝑀  /  𝑥 ⦌ ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) )  | 
						
						
							| 43 | 
							
								
							 | 
							dmeq | 
							⊢ ( 𝑥  =  𝑀  →  dom  𝑥  =  dom  𝑀 )  | 
						
						
							| 44 | 
							
								43
							 | 
							dmeqd | 
							⊢ ( 𝑥  =  𝑀  →  dom  dom  𝑥  =  dom  dom  𝑀 )  | 
						
						
							| 45 | 
							
								
							 | 
							oveq | 
							⊢ ( 𝑥  =  𝑀  →  ( 𝑖 𝑥 𝑗 )  =  ( 𝑖 𝑀 𝑗 ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							fveq2d | 
							⊢ ( 𝑥  =  𝑀  →  ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) )  =  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							fveq1d | 
							⊢ ( 𝑥  =  𝑀  →  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 )  =  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) )  | 
						
						
							| 48 | 
							
								44 44 47
							 | 
							mpoeq123dv | 
							⊢ ( 𝑥  =  𝑀  →  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑖  ∈  dom  dom  𝑀 ,  𝑗  ∈  dom  dom  𝑀  ↦  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							adantl | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  =  𝑀 )  →  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑖  ∈  dom  dom  𝑀 ,  𝑗  ∈  dom  dom  𝑀  ↦  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ) )  | 
						
						
							| 50 | 
							
								30 49
							 | 
							csbied | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ⦋ 𝑀  /  𝑥 ⦌ ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑖  ∈  dom  dom  𝑀 ,  𝑗  ∈  dom  dom  𝑀  ↦  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ) )  | 
						
						
							| 51 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 )  | 
						
						
							| 52 | 
							
								2 51 3
							 | 
							matbas2i | 
							⊢ ( 𝑀  ∈  𝐵  →  𝑀  ∈  ( ( Base ‘ 𝑃 )  ↑m  ( 𝑁  ×  𝑁 ) ) )  | 
						
						
							| 53 | 
							
								
							 | 
							elmapi | 
							⊢ ( 𝑀  ∈  ( ( Base ‘ 𝑃 )  ↑m  ( 𝑁  ×  𝑁 ) )  →  𝑀 : ( 𝑁  ×  𝑁 ) ⟶ ( Base ‘ 𝑃 ) )  | 
						
						
							| 54 | 
							
								
							 | 
							fdm | 
							⊢ ( 𝑀 : ( 𝑁  ×  𝑁 ) ⟶ ( Base ‘ 𝑃 )  →  dom  𝑀  =  ( 𝑁  ×  𝑁 ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							dmeqd | 
							⊢ ( 𝑀 : ( 𝑁  ×  𝑁 ) ⟶ ( Base ‘ 𝑃 )  →  dom  dom  𝑀  =  dom  ( 𝑁  ×  𝑁 ) )  | 
						
						
							| 56 | 
							
								
							 | 
							dmxpid | 
							⊢ dom  ( 𝑁  ×  𝑁 )  =  𝑁  | 
						
						
							| 57 | 
							
								55 56
							 | 
							eqtr2di | 
							⊢ ( 𝑀 : ( 𝑁  ×  𝑁 ) ⟶ ( Base ‘ 𝑃 )  →  𝑁  =  dom  dom  𝑀 )  | 
						
						
							| 58 | 
							
								52 53 57
							 | 
							3syl | 
							⊢ ( 𝑀  ∈  𝐵  →  𝑁  =  dom  dom  𝑀 )  | 
						
						
							| 59 | 
							
								58
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑁  =  dom  dom  𝑀 )  | 
						
						
							| 60 | 
							
								59
							 | 
							adantr | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑚  =  𝑀 )  →  𝑁  =  dom  dom  𝑀 )  | 
						
						
							| 61 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑚  =  𝑀 )  →  𝑚  =  𝑀 )  | 
						
						
							| 62 | 
							
								61
							 | 
							oveqd | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑚  =  𝑀 )  →  ( 𝑖 𝑚 𝑗 )  =  ( 𝑖 𝑀 𝑗 ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							fveq2d | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑚  =  𝑀 )  →  ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) )  =  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							fveq1d | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑚  =  𝑀 )  →  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 )  =  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) )  | 
						
						
							| 65 | 
							
								60 60 64
							 | 
							mpoeq123dv | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑚  =  𝑀 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑖  ∈  dom  dom  𝑀 ,  𝑗  ∈  dom  dom  𝑀  ↦  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ) )  | 
						
						
							| 66 | 
							
								30 65
							 | 
							csbied | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ⦋ 𝑀  /  𝑚 ⦌ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑖  ∈  dom  dom  𝑀 ,  𝑗  ∈  dom  dom  𝑀  ↦  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ) )  | 
						
						
							| 67 | 
							
								50 66
							 | 
							eqtr4d | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ⦋ 𝑀  /  𝑥 ⦌ ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) )  =  ⦋ 𝑀  /  𝑚 ⦌ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							adantr | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  →  ⦋ 𝑀  /  𝑥 ⦌ ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) )  =  ⦋ 𝑀  /  𝑚 ⦌ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							mpteq2dv | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  →  ( 𝑘  ∈  𝐼  ↦  ⦋ 𝑀  /  𝑥 ⦌ ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) )  =  ( 𝑘  ∈  𝐼  ↦  ⦋ 𝑀  /  𝑚 ⦌ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) )  | 
						
						
							| 70 | 
							
								42 69
							 | 
							eqtrd | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  →  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 )  =  ( 𝑘  ∈  𝐼  ↦  ⦋ 𝑀  /  𝑚 ⦌ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) )  | 
						
						
							| 71 | 
							
								
							 | 
							oveq | 
							⊢ ( 𝑚  =  𝑀  →  ( 𝑖 𝑚 𝑗 )  =  ( 𝑖 𝑀 𝑗 ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							adantl | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑚  =  𝑀 )  →  ( 𝑖 𝑚 𝑗 )  =  ( 𝑖 𝑀 𝑗 ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							fveq2d | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑚  =  𝑀 )  →  ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) )  =  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) )  | 
						
						
							| 74 | 
							
								73
							 | 
							fveq1d | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑚  =  𝑀 )  →  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 )  =  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							mpoeq3dv | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑚  =  𝑀 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ) )  | 
						
						
							| 76 | 
							
								30 75
							 | 
							csbied | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ⦋ 𝑀  /  𝑚 ⦌ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ) )  | 
						
						
							| 77 | 
							
								76
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  𝐼 )  →  ⦋ 𝑀  /  𝑚 ⦌ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) ) )  | 
						
						
							| 78 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 )  | 
						
						
							| 79 | 
							
								
							 | 
							simpll1 | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  𝐼 )  →  𝑁  ∈  Fin )  | 
						
						
							| 80 | 
							
								
							 | 
							simpll2 | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  𝐼 )  →  𝑅  ∈  CRing )  | 
						
						
							| 81 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  𝐼 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑖  ∈  𝑁 )  | 
						
						
							| 82 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  𝐼 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑗  ∈  𝑁 )  | 
						
						
							| 83 | 
							
								31
							 | 
							adantr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  𝐼 )  →  𝑀  ∈  𝐵 )  | 
						
						
							| 84 | 
							
								83
							 | 
							3ad2ant1 | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  𝐼 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑀  ∈  𝐵 )  | 
						
						
							| 85 | 
							
								2 51 3 81 82 84
							 | 
							matecld | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  𝐼 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 𝑀 𝑗 )  ∈  ( Base ‘ 𝑃 ) )  | 
						
						
							| 86 | 
							
								
							 | 
							ssel | 
							⊢ ( 𝐼  ⊆  ℕ0  →  ( 𝑘  ∈  𝐼  →  𝑘  ∈  ℕ0 ) )  | 
						
						
							| 87 | 
							
								86
							 | 
							ad2antrl | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  →  ( 𝑘  ∈  𝐼  →  𝑘  ∈  ℕ0 ) )  | 
						
						
							| 88 | 
							
								87
							 | 
							imp | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  𝐼 )  →  𝑘  ∈  ℕ0 )  | 
						
						
							| 89 | 
							
								88
							 | 
							3ad2ant1 | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  𝐼 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑘  ∈  ℕ0 )  | 
						
						
							| 90 | 
							
								
							 | 
							eqid | 
							⊢ ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  =  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  | 
						
						
							| 91 | 
							
								90 51 1 78
							 | 
							coe1fvalcl | 
							⊢ ( ( ( 𝑖 𝑀 𝑗 )  ∈  ( Base ‘ 𝑃 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 )  ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 92 | 
							
								85 89 91
							 | 
							syl2anc | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  𝐼 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 )  ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 93 | 
							
								8 78 9 79 80 92
							 | 
							matbas2d | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  𝐼 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑘 ) )  ∈  𝐷 )  | 
						
						
							| 94 | 
							
								77 93
							 | 
							eqeltrd | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑘  ∈  𝐼 )  →  ⦋ 𝑀  /  𝑚 ⦌ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) )  ∈  𝐷 )  | 
						
						
							| 95 | 
							
								94
							 | 
							fmpttd | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  →  ( 𝑘  ∈  𝐼  ↦  ⦋ 𝑀  /  𝑚 ⦌ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) : 𝐼 ⟶ 𝐷 )  | 
						
						
							| 96 | 
							
								9
							 | 
							fvexi | 
							⊢ 𝐷  ∈  V  | 
						
						
							| 97 | 
							
								96
							 | 
							a1i | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐷  ∈  V )  | 
						
						
							| 98 | 
							
								28
							 | 
							adantr | 
							⊢ ( ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ )  →  𝐼  ∈  V )  | 
						
						
							| 99 | 
							
								
							 | 
							elmapg | 
							⊢ ( ( 𝐷  ∈  V  ∧  𝐼  ∈  V )  →  ( ( 𝑘  ∈  𝐼  ↦  ⦋ 𝑀  /  𝑚 ⦌ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) )  ∈  ( 𝐷  ↑m  𝐼 )  ↔  ( 𝑘  ∈  𝐼  ↦  ⦋ 𝑀  /  𝑚 ⦌ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) : 𝐼 ⟶ 𝐷 ) )  | 
						
						
							| 100 | 
							
								97 98 99
							 | 
							syl2an | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  →  ( ( 𝑘  ∈  𝐼  ↦  ⦋ 𝑀  /  𝑚 ⦌ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) )  ∈  ( 𝐷  ↑m  𝐼 )  ↔  ( 𝑘  ∈  𝐼  ↦  ⦋ 𝑀  /  𝑚 ⦌ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) : 𝐼 ⟶ 𝐷 ) )  | 
						
						
							| 101 | 
							
								95 100
							 | 
							mpbird | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  →  ( 𝑘  ∈  𝐼  ↦  ⦋ 𝑀  /  𝑚 ⦌ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) )  ∈  ( 𝐷  ↑m  𝐼 ) )  | 
						
						
							| 102 | 
							
								70 101
							 | 
							eqeltrd | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  →  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 )  ∈  ( 𝐷  ↑m  𝐼 ) )  | 
						
						
							| 103 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝑓  =  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 )  →  ( 𝑓 ‘ 𝑛 )  =  ( ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) ‘ 𝑛 ) )  | 
						
						
							| 104 | 
							
								103
							 | 
							adantl | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑓  =  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) )  →  ( 𝑓 ‘ 𝑛 )  =  ( ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) ‘ 𝑛 ) )  | 
						
						
							| 105 | 
							
								104
							 | 
							adantr | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑓  =  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) )  ∧  𝑛  ∈  𝐼 )  →  ( 𝑓 ‘ 𝑛 )  =  ( ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) ‘ 𝑛 ) )  | 
						
						
							| 106 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) )  =  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) )  | 
						
						
							| 107 | 
							
								
							 | 
							dmexg | 
							⊢ ( 𝑥  ∈  𝐵  →  dom  𝑥  ∈  V )  | 
						
						
							| 108 | 
							
								107
							 | 
							dmexd | 
							⊢ ( 𝑥  ∈  𝐵  →  dom  dom  𝑥  ∈  V )  | 
						
						
							| 109 | 
							
								108 108
							 | 
							jca | 
							⊢ ( 𝑥  ∈  𝐵  →  ( dom  dom  𝑥  ∈  V  ∧  dom  dom  𝑥  ∈  V ) )  | 
						
						
							| 110 | 
							
								109
							 | 
							ad2antrl | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑘  ∈  𝐼 ) )  →  ( dom  dom  𝑥  ∈  V  ∧  dom  dom  𝑥  ∈  V ) )  | 
						
						
							| 111 | 
							
								
							 | 
							mpoexga | 
							⊢ ( ( dom  dom  𝑥  ∈  V  ∧  dom  dom  𝑥  ∈  V )  →  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) )  ∈  V )  | 
						
						
							| 112 | 
							
								110 111
							 | 
							syl | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑘  ∈  𝐼 ) )  →  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) )  ∈  V )  | 
						
						
							| 113 | 
							
								112
							 | 
							ralrimivva | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑘  ∈  𝐼 ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) )  ∈  V )  | 
						
						
							| 114 | 
							
								29
							 | 
							adantr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  →  𝐼  ∈  V )  | 
						
						
							| 115 | 
							
								31
							 | 
							adantr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  →  𝑀  ∈  𝐵 )  | 
						
						
							| 116 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  →  𝑛  ∈  𝐼 )  | 
						
						
							| 117 | 
							
								106 113 114 115 116
							 | 
							fvmpocurryd | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  →  ( ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) ‘ 𝑛 )  =  ( 𝑀 ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) 𝑛 ) )  | 
						
						
							| 118 | 
							
								
							 | 
							df-decpmat | 
							⊢  decompPMat   =  ( 𝑥  ∈  V ,  𝑘  ∈  ℕ0  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) )  | 
						
						
							| 119 | 
							
								118
							 | 
							reseq1i | 
							⊢ (  decompPMat   ↾  ( 𝐵  ×  𝐼 ) )  =  ( ( 𝑥  ∈  V ,  𝑘  ∈  ℕ0  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) )  ↾  ( 𝐵  ×  𝐼 ) )  | 
						
						
							| 120 | 
							
								
							 | 
							ssv | 
							⊢ 𝐵  ⊆  V  | 
						
						
							| 121 | 
							
								120
							 | 
							a1i | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐵  ⊆  V )  | 
						
						
							| 122 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ )  →  𝐼  ⊆  ℕ0 )  | 
						
						
							| 123 | 
							
								121 122
							 | 
							anim12i | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  →  ( 𝐵  ⊆  V  ∧  𝐼  ⊆  ℕ0 ) )  | 
						
						
							| 124 | 
							
								123
							 | 
							adantr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  →  ( 𝐵  ⊆  V  ∧  𝐼  ⊆  ℕ0 ) )  | 
						
						
							| 125 | 
							
								
							 | 
							resmpo | 
							⊢ ( ( 𝐵  ⊆  V  ∧  𝐼  ⊆  ℕ0 )  →  ( ( 𝑥  ∈  V ,  𝑘  ∈  ℕ0  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) )  ↾  ( 𝐵  ×  𝐼 ) )  =  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) )  | 
						
						
							| 126 | 
							
								124 125
							 | 
							syl | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  →  ( ( 𝑥  ∈  V ,  𝑘  ∈  ℕ0  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) )  ↾  ( 𝐵  ×  𝐼 ) )  =  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) )  | 
						
						
							| 127 | 
							
								119 126
							 | 
							eqtr2id | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  →  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) )  =  (  decompPMat   ↾  ( 𝐵  ×  𝐼 ) ) )  | 
						
						
							| 128 | 
							
								127
							 | 
							oveqd | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  →  ( 𝑀 ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) 𝑛 )  =  ( 𝑀 (  decompPMat   ↾  ( 𝐵  ×  𝐼 ) ) 𝑛 ) )  | 
						
						
							| 129 | 
							
								117 128
							 | 
							eqtrd | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑛  ∈  𝐼 )  →  ( ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) ‘ 𝑛 )  =  ( 𝑀 (  decompPMat   ↾  ( 𝐵  ×  𝐼 ) ) 𝑛 ) )  | 
						
						
							| 130 | 
							
								129
							 | 
							adantlr | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑓  =  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) )  ∧  𝑛  ∈  𝐼 )  →  ( ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) ‘ 𝑛 )  =  ( 𝑀 (  decompPMat   ↾  ( 𝐵  ×  𝐼 ) ) 𝑛 ) )  | 
						
						
							| 131 | 
							
								105 130
							 | 
							eqtrd | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑓  =  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) )  ∧  𝑛  ∈  𝐼 )  →  ( 𝑓 ‘ 𝑛 )  =  ( 𝑀 (  decompPMat   ↾  ( 𝐵  ×  𝐼 ) ) 𝑛 ) )  | 
						
						
							| 132 | 
							
								131
							 | 
							fveq2d | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑓  =  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) )  ∧  𝑛  ∈  𝐼 )  →  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) )  =  ( 𝑇 ‘ ( 𝑀 (  decompPMat   ↾  ( 𝐵  ×  𝐼 ) ) 𝑛 ) ) )  | 
						
						
							| 133 | 
							
								30
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑓  =  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) )  →  𝑀  ∈  𝐵 )  | 
						
						
							| 134 | 
							
								
							 | 
							ovres | 
							⊢ ( ( 𝑀  ∈  𝐵  ∧  𝑛  ∈  𝐼 )  →  ( 𝑀 (  decompPMat   ↾  ( 𝐵  ×  𝐼 ) ) 𝑛 )  =  ( 𝑀  decompPMat  𝑛 ) )  | 
						
						
							| 135 | 
							
								133 134
							 | 
							sylan | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑓  =  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) )  ∧  𝑛  ∈  𝐼 )  →  ( 𝑀 (  decompPMat   ↾  ( 𝐵  ×  𝐼 ) ) 𝑛 )  =  ( 𝑀  decompPMat  𝑛 ) )  | 
						
						
							| 136 | 
							
								135
							 | 
							fveq2d | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑓  =  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) )  ∧  𝑛  ∈  𝐼 )  →  ( 𝑇 ‘ ( 𝑀 (  decompPMat   ↾  ( 𝐵  ×  𝐼 ) ) 𝑛 ) )  =  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) )  | 
						
						
							| 137 | 
							
								132 136
							 | 
							eqtrd | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑓  =  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) )  ∧  𝑛  ∈  𝐼 )  →  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) )  =  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) )  | 
						
						
							| 138 | 
							
								137
							 | 
							oveq2d | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑓  =  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) )  ∧  𝑛  ∈  𝐼 )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) )  =  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) )  | 
						
						
							| 139 | 
							
								138
							 | 
							mpteq2dva | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑓  =  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) )  →  ( 𝑛  ∈  𝐼  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) )  =  ( 𝑛  ∈  𝐼  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) )  | 
						
						
							| 140 | 
							
								139
							 | 
							oveq2d | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑓  =  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) )  →  ( 𝐶  Σg  ( 𝑛  ∈  𝐼  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  =  ( 𝐶  Σg  ( 𝑛  ∈  𝐼  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) ) )  | 
						
						
							| 141 | 
							
								140
							 | 
							eqeq2d | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  ∧  𝑓  =  ( curry  ( 𝑥  ∈  𝐵 ,  𝑘  ∈  𝐼  ↦  ( 𝑖  ∈  dom  dom  𝑥 ,  𝑗  ∈  dom  dom  𝑥  ↦  ( ( coe1 ‘ ( 𝑖 𝑥 𝑗 ) ) ‘ 𝑘 ) ) ) ‘ 𝑀 ) )  →  ( 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  𝐼  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) )  ↔  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  𝐼  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) ) ) )  | 
						
						
							| 142 | 
							
								102 141
							 | 
							rspcedv | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐼  ⊆  ℕ0  ∧  𝐼  ≠  ∅ ) )  →  ( 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  𝐼  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) )  →  ∃ 𝑓  ∈  ( 𝐷  ↑m  𝐼 ) 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  𝐼  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) ) )  |