| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pmatcollpw.p | 
							⊢ 𝑃  =  ( Poly1 ‘ 𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							pmatcollpw.c | 
							⊢ 𝐶  =  ( 𝑁  Mat  𝑃 )  | 
						
						
							| 3 | 
							
								
							 | 
							pmatcollpw.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐶 )  | 
						
						
							| 4 | 
							
								
							 | 
							pmatcollpw.m | 
							⊢  ∗   =  (  ·𝑠  ‘ 𝐶 )  | 
						
						
							| 5 | 
							
								
							 | 
							pmatcollpw.e | 
							⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							pmatcollpw.x | 
							⊢ 𝑋  =  ( var1 ‘ 𝑅 )  | 
						
						
							| 7 | 
							
								
							 | 
							pmatcollpw.t | 
							⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 )  | 
						
						
							| 8 | 
							
								
							 | 
							crngring | 
							⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring )  | 
						
						
							| 9 | 
							
								8
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑅  ∈  Ring )  | 
						
						
							| 10 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑀  ∈  𝐵 )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑁  Mat  𝑅 )  =  ( 𝑁  Mat  𝑅 )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ ( 𝑁  Mat  𝑅 ) )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) )  | 
						
						
							| 13 | 
							
								1 2 3 11 12
							 | 
							decpmataa0 | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) ) )  | 
						
						
							| 14 | 
							
								9 10 13
							 | 
							syl2anc | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) ) )  | 
						
						
							| 15 | 
							
								1 2 3 4 5 6 7
							 | 
							pmatcollpw | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) ) )  →  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝐶 )  =  ( 0g ‘ 𝐶 )  | 
						
						
							| 18 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑁  ∈  Fin )  | 
						
						
							| 19 | 
							
								1 2
							 | 
							pmatring | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐶  ∈  Ring )  | 
						
						
							| 20 | 
							
								18 9 19
							 | 
							syl2anc | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐶  ∈  Ring )  | 
						
						
							| 21 | 
							
								
							 | 
							ringcmn | 
							⊢ ( 𝐶  ∈  Ring  →  𝐶  ∈  CMnd )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							syl | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐶  ∈  CMnd )  | 
						
						
							| 23 | 
							
								22
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) ) )  →  𝐶  ∈  CMnd )  | 
						
						
							| 24 | 
							
								18
							 | 
							adantr | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑁  ∈  Fin )  | 
						
						
							| 25 | 
							
								9
							 | 
							adantr | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑅  ∈  Ring )  | 
						
						
							| 26 | 
							
								1
							 | 
							ply1ring | 
							⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							syl | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑃  ∈  Ring )  | 
						
						
							| 28 | 
							
								9
							 | 
							anim1i | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑅  ∈  Ring  ∧  𝑛  ∈  ℕ0 ) )  | 
						
						
							| 29 | 
							
								
							 | 
							eqid | 
							⊢ ( mulGrp ‘ 𝑃 )  =  ( mulGrp ‘ 𝑃 )  | 
						
						
							| 30 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 )  | 
						
						
							| 31 | 
							
								1 6 29 5 30
							 | 
							ply1moncl | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑛  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) )  | 
						
						
							| 32 | 
							
								28 31
							 | 
							syl | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑛  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) )  | 
						
						
							| 33 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑅  ∈  CRing )  | 
						
						
							| 34 | 
							
								10
							 | 
							adantr | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑀  ∈  𝐵 )  | 
						
						
							| 35 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  𝑛  ∈  ℕ0 )  | 
						
						
							| 36 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ ( 𝑁  Mat  𝑅 ) )  =  ( Base ‘ ( 𝑁  Mat  𝑅 ) )  | 
						
						
							| 37 | 
							
								1 2 3 11 36
							 | 
							decpmatcl | 
							⊢ ( ( 𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝑛 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) )  | 
						
						
							| 38 | 
							
								33 34 35 37
							 | 
							syl3anc | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝑛 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) )  | 
						
						
							| 39 | 
							
								7 11 36 1 2 3
							 | 
							mat2pmatbas0 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑀  decompPMat  𝑛 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑅 ) ) )  →  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) )  ∈  𝐵 )  | 
						
						
							| 40 | 
							
								24 25 38 39
							 | 
							syl3anc | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) )  ∈  𝐵 )  | 
						
						
							| 41 | 
							
								30 2 3 4
							 | 
							matvscl | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring )  ∧  ( ( 𝑛  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 )  ∧  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) )  ∈  𝐵 ) )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) )  ∈  𝐵 )  | 
						
						
							| 42 | 
							
								24 27 32 40 41
							 | 
							syl22anc | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) )  ∈  𝐵 )  | 
						
						
							| 43 | 
							
								42
							 | 
							ralrimiva | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∀ 𝑛  ∈  ℕ0 ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) )  ∈  𝐵 )  | 
						
						
							| 44 | 
							
								43
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) ) )  →  ∀ 𝑛  ∈  ℕ0 ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) )  ∈  𝐵 )  | 
						
						
							| 45 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) ) )  →  𝑠  ∈  ℕ0 )  | 
						
						
							| 46 | 
							
								
							 | 
							fveq2 | 
							⊢ ( ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) )  →  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) )  =  ( 𝑇 ‘ ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) ) )  | 
						
						
							| 47 | 
							
								9 18
							 | 
							jca | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin ) )  | 
						
						
							| 49 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ ( 𝑁  Mat  𝑃 ) )  =  ( 0g ‘ ( 𝑁  Mat  𝑃 ) )  | 
						
						
							| 50 | 
							
								7 1 12 49
							 | 
							0mat2pmat | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝑁  ∈  Fin )  →  ( 𝑇 ‘ ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) )  =  ( 0g ‘ ( 𝑁  Mat  𝑃 ) ) )  | 
						
						
							| 51 | 
							
								48 50
							 | 
							syl | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑇 ‘ ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) )  =  ( 0g ‘ ( 𝑁  Mat  𝑃 ) ) )  | 
						
						
							| 52 | 
							
								46 51
							 | 
							sylan9eqr | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) )  →  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) )  =  ( 0g ‘ ( 𝑁  Mat  𝑃 ) ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							oveq2d | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) )  =  ( ( 𝑛  ↑  𝑋 )  ∗  ( 0g ‘ ( 𝑁  Mat  𝑃 ) ) ) )  | 
						
						
							| 54 | 
							
								1 2
							 | 
							pmatlmod | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐶  ∈  LMod )  | 
						
						
							| 55 | 
							
								18 9 54
							 | 
							syl2anc | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐶  ∈  LMod )  | 
						
						
							| 56 | 
							
								55
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  𝐶  ∈  LMod )  | 
						
						
							| 57 | 
							
								28
							 | 
							adantlr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑅  ∈  Ring  ∧  𝑛  ∈  ℕ0 ) )  | 
						
						
							| 58 | 
							
								57 31
							 | 
							syl | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑛  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) )  | 
						
						
							| 59 | 
							
								1
							 | 
							ply1crng | 
							⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  CRing )  | 
						
						
							| 60 | 
							
								59
							 | 
							anim2i | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑁  ∈  Fin  ∧  𝑃  ∈  CRing ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							3adant3 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑃  ∈  CRing ) )  | 
						
						
							| 62 | 
							
								2
							 | 
							matsca2 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  CRing )  →  𝑃  =  ( Scalar ‘ 𝐶 ) )  | 
						
						
							| 63 | 
							
								61 62
							 | 
							syl | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑃  =  ( Scalar ‘ 𝐶 ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							eqcomd | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( Scalar ‘ 𝐶 )  =  𝑃 )  | 
						
						
							| 65 | 
							
								64
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ( Scalar ‘ 𝐶 )  =  𝑃 )  | 
						
						
							| 66 | 
							
								65
							 | 
							fveq2d | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ( Base ‘ ( Scalar ‘ 𝐶 ) )  =  ( Base ‘ 𝑃 ) )  | 
						
						
							| 67 | 
							
								58 66
							 | 
							eleqtrrd | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑛  ↑  𝑋 )  ∈  ( Base ‘ ( Scalar ‘ 𝐶 ) ) )  | 
						
						
							| 68 | 
							
								2
							 | 
							eqcomi | 
							⊢ ( 𝑁  Mat  𝑃 )  =  𝐶  | 
						
						
							| 69 | 
							
								68
							 | 
							fveq2i | 
							⊢ ( 0g ‘ ( 𝑁  Mat  𝑃 ) )  =  ( 0g ‘ 𝐶 )  | 
						
						
							| 70 | 
							
								69
							 | 
							oveq2i | 
							⊢ ( ( 𝑛  ↑  𝑋 )  ∗  ( 0g ‘ ( 𝑁  Mat  𝑃 ) ) )  =  ( ( 𝑛  ↑  𝑋 )  ∗  ( 0g ‘ 𝐶 ) )  | 
						
						
							| 71 | 
							
								
							 | 
							eqid | 
							⊢ ( Scalar ‘ 𝐶 )  =  ( Scalar ‘ 𝐶 )  | 
						
						
							| 72 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ ( Scalar ‘ 𝐶 ) )  =  ( Base ‘ ( Scalar ‘ 𝐶 ) )  | 
						
						
							| 73 | 
							
								71 4 72 17
							 | 
							lmodvs0 | 
							⊢ ( ( 𝐶  ∈  LMod  ∧  ( 𝑛  ↑  𝑋 )  ∈  ( Base ‘ ( Scalar ‘ 𝐶 ) ) )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 0g ‘ 𝐶 ) )  =  ( 0g ‘ 𝐶 ) )  | 
						
						
							| 74 | 
							
								70 73
							 | 
							eqtrid | 
							⊢ ( ( 𝐶  ∈  LMod  ∧  ( 𝑛  ↑  𝑋 )  ∈  ( Base ‘ ( Scalar ‘ 𝐶 ) ) )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 0g ‘ ( 𝑁  Mat  𝑃 ) ) )  =  ( 0g ‘ 𝐶 ) )  | 
						
						
							| 75 | 
							
								56 67 74
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 0g ‘ ( 𝑁  Mat  𝑃 ) ) )  =  ( 0g ‘ 𝐶 ) )  | 
						
						
							| 76 | 
							
								75
							 | 
							adantr | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 0g ‘ ( 𝑁  Mat  𝑃 ) ) )  =  ( 0g ‘ 𝐶 ) )  | 
						
						
							| 77 | 
							
								53 76
							 | 
							eqtrd | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) )  =  ( 0g ‘ 𝐶 ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							ex | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) )  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) )  =  ( 0g ‘ 𝐶 ) ) )  | 
						
						
							| 79 | 
							
								78
							 | 
							imim2d | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑠  <  𝑛  →  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) )  →  ( 𝑠  <  𝑛  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) )  =  ( 0g ‘ 𝐶 ) ) ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							ralimdva | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  →  ( ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) )  →  ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) )  =  ( 0g ‘ 𝐶 ) ) ) )  | 
						
						
							| 81 | 
							
								80
							 | 
							imp | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) ) )  →  ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) )  =  ( 0g ‘ 𝐶 ) ) )  | 
						
						
							| 82 | 
							
								3 17 23 44 45 81
							 | 
							gsummptnn0fz | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) ) )  →  ( 𝐶  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) )  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) ) )  | 
						
						
							| 83 | 
							
								16 82
							 | 
							eqtrd | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) ) )  →  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) ) )  | 
						
						
							| 84 | 
							
								83
							 | 
							ex | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  →  ( ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) )  →  𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) ) ) )  | 
						
						
							| 85 | 
							
								84
							 | 
							reximdva | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ∃ 𝑠  ∈  ℕ0 ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( 𝑀  decompPMat  𝑛 )  =  ( 0g ‘ ( 𝑁  Mat  𝑅 ) ) )  →  ∃ 𝑠  ∈  ℕ0 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) ) ) )  | 
						
						
							| 86 | 
							
								14 85
							 | 
							mpd | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ0 𝑀  =  ( 𝐶  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ∗  ( 𝑇 ‘ ( 𝑀  decompPMat  𝑛 ) ) ) ) ) )  |