Step |
Hyp |
Ref |
Expression |
1 |
|
pmatcollpw.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
pmatcollpw.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
3 |
|
pmatcollpw.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
4 |
|
pmatcollpw.m |
⊢ ∗ = ( ·𝑠 ‘ 𝐶 ) |
5 |
|
pmatcollpw.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
6 |
|
pmatcollpw.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
7 |
|
pmatcollpw.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
8 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
9 |
8
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
10 |
|
simp3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑀 ∈ 𝐵 ) |
11 |
|
eqid |
⊢ ( 𝑁 Mat 𝑅 ) = ( 𝑁 Mat 𝑅 ) |
12 |
|
eqid |
⊢ ( 0g ‘ ( 𝑁 Mat 𝑅 ) ) = ( 0g ‘ ( 𝑁 Mat 𝑅 ) ) |
13 |
1 2 3 11 12
|
decpmataa0 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑀 decompPMat 𝑛 ) = ( 0g ‘ ( 𝑁 Mat 𝑅 ) ) ) ) |
14 |
9 10 13
|
syl2anc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑀 decompPMat 𝑛 ) = ( 0g ‘ ( 𝑁 Mat 𝑅 ) ) ) ) |
15 |
1 2 3 4 5 6 7
|
pmatcollpw |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ) ) ) |
16 |
15
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑀 decompPMat 𝑛 ) = ( 0g ‘ ( 𝑁 Mat 𝑅 ) ) ) ) → 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ) ) ) |
17 |
|
eqid |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ 𝐶 ) |
18 |
|
simp1 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑁 ∈ Fin ) |
19 |
1 2
|
pmatring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ Ring ) |
20 |
18 9 19
|
syl2anc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝐶 ∈ Ring ) |
21 |
|
ringcmn |
⊢ ( 𝐶 ∈ Ring → 𝐶 ∈ CMnd ) |
22 |
20 21
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝐶 ∈ CMnd ) |
23 |
22
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑀 decompPMat 𝑛 ) = ( 0g ‘ ( 𝑁 Mat 𝑅 ) ) ) ) → 𝐶 ∈ CMnd ) |
24 |
18
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑁 ∈ Fin ) |
25 |
9
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
26 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
27 |
25 26
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑃 ∈ Ring ) |
28 |
9
|
anim1i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0 ) ) |
29 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
30 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
31 |
1 6 29 5 30
|
ply1moncl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
32 |
28 31
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
33 |
|
simpl2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑅 ∈ CRing ) |
34 |
10
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑀 ∈ 𝐵 ) |
35 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
36 |
|
eqid |
⊢ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) |
37 |
1 2 3 11 36
|
decpmatcl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝑛 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
38 |
33 34 35 37
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝑛 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
39 |
7 11 36 1 2 3
|
mat2pmatbas0 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝑀 decompPMat 𝑛 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) → ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ∈ 𝐵 ) |
40 |
24 25 38 39
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ∈ 𝐵 ) |
41 |
30 2 3 4
|
matvscl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) ∧ ( ( 𝑛 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ∈ 𝐵 ) ) → ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ∈ 𝐵 ) |
42 |
24 27 32 40 41
|
syl22anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ∈ 𝐵 ) |
43 |
42
|
ralrimiva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ∀ 𝑛 ∈ ℕ0 ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ∈ 𝐵 ) |
44 |
43
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑀 decompPMat 𝑛 ) = ( 0g ‘ ( 𝑁 Mat 𝑅 ) ) ) ) → ∀ 𝑛 ∈ ℕ0 ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ∈ 𝐵 ) |
45 |
|
simplr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑀 decompPMat 𝑛 ) = ( 0g ‘ ( 𝑁 Mat 𝑅 ) ) ) ) → 𝑠 ∈ ℕ0 ) |
46 |
|
fveq2 |
⊢ ( ( 𝑀 decompPMat 𝑛 ) = ( 0g ‘ ( 𝑁 Mat 𝑅 ) ) → ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) = ( 𝑇 ‘ ( 0g ‘ ( 𝑁 Mat 𝑅 ) ) ) ) |
47 |
9 18
|
jca |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ) ) |
48 |
47
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ) ) |
49 |
|
eqid |
⊢ ( 0g ‘ ( 𝑁 Mat 𝑃 ) ) = ( 0g ‘ ( 𝑁 Mat 𝑃 ) ) |
50 |
7 1 12 49
|
0mat2pmat |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ) → ( 𝑇 ‘ ( 0g ‘ ( 𝑁 Mat 𝑅 ) ) ) = ( 0g ‘ ( 𝑁 Mat 𝑃 ) ) ) |
51 |
48 50
|
syl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑇 ‘ ( 0g ‘ ( 𝑁 Mat 𝑅 ) ) ) = ( 0g ‘ ( 𝑁 Mat 𝑃 ) ) ) |
52 |
46 51
|
sylan9eqr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑀 decompPMat 𝑛 ) = ( 0g ‘ ( 𝑁 Mat 𝑅 ) ) ) → ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) = ( 0g ‘ ( 𝑁 Mat 𝑃 ) ) ) |
53 |
52
|
oveq2d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑀 decompPMat 𝑛 ) = ( 0g ‘ ( 𝑁 Mat 𝑅 ) ) ) → ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) = ( ( 𝑛 ↑ 𝑋 ) ∗ ( 0g ‘ ( 𝑁 Mat 𝑃 ) ) ) ) |
54 |
1 2
|
pmatlmod |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ LMod ) |
55 |
18 9 54
|
syl2anc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝐶 ∈ LMod ) |
56 |
55
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → 𝐶 ∈ LMod ) |
57 |
28
|
adantlr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0 ) ) |
58 |
57 31
|
syl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
59 |
1
|
ply1crng |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ CRing ) |
60 |
59
|
anim2i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) ) |
61 |
60
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) ) |
62 |
2
|
matsca2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) → 𝑃 = ( Scalar ‘ 𝐶 ) ) |
63 |
61 62
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑃 = ( Scalar ‘ 𝐶 ) ) |
64 |
63
|
eqcomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( Scalar ‘ 𝐶 ) = 𝑃 ) |
65 |
64
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( Scalar ‘ 𝐶 ) = 𝑃 ) |
66 |
65
|
fveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ 𝑃 ) ) |
67 |
58 66
|
eleqtrrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ↑ 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
68 |
2
|
eqcomi |
⊢ ( 𝑁 Mat 𝑃 ) = 𝐶 |
69 |
68
|
fveq2i |
⊢ ( 0g ‘ ( 𝑁 Mat 𝑃 ) ) = ( 0g ‘ 𝐶 ) |
70 |
69
|
oveq2i |
⊢ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 0g ‘ ( 𝑁 Mat 𝑃 ) ) ) = ( ( 𝑛 ↑ 𝑋 ) ∗ ( 0g ‘ 𝐶 ) ) |
71 |
|
eqid |
⊢ ( Scalar ‘ 𝐶 ) = ( Scalar ‘ 𝐶 ) |
72 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) ) |
73 |
71 4 72 17
|
lmodvs0 |
⊢ ( ( 𝐶 ∈ LMod ∧ ( 𝑛 ↑ 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) → ( ( 𝑛 ↑ 𝑋 ) ∗ ( 0g ‘ 𝐶 ) ) = ( 0g ‘ 𝐶 ) ) |
74 |
70 73
|
eqtrid |
⊢ ( ( 𝐶 ∈ LMod ∧ ( 𝑛 ↑ 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) → ( ( 𝑛 ↑ 𝑋 ) ∗ ( 0g ‘ ( 𝑁 Mat 𝑃 ) ) ) = ( 0g ‘ 𝐶 ) ) |
75 |
56 67 74
|
syl2anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 ↑ 𝑋 ) ∗ ( 0g ‘ ( 𝑁 Mat 𝑃 ) ) ) = ( 0g ‘ 𝐶 ) ) |
76 |
75
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑀 decompPMat 𝑛 ) = ( 0g ‘ ( 𝑁 Mat 𝑅 ) ) ) → ( ( 𝑛 ↑ 𝑋 ) ∗ ( 0g ‘ ( 𝑁 Mat 𝑃 ) ) ) = ( 0g ‘ 𝐶 ) ) |
77 |
53 76
|
eqtrd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑀 decompPMat 𝑛 ) = ( 0g ‘ ( 𝑁 Mat 𝑅 ) ) ) → ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) = ( 0g ‘ 𝐶 ) ) |
78 |
77
|
ex |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑀 decompPMat 𝑛 ) = ( 0g ‘ ( 𝑁 Mat 𝑅 ) ) → ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) = ( 0g ‘ 𝐶 ) ) ) |
79 |
78
|
imim2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑠 < 𝑛 → ( 𝑀 decompPMat 𝑛 ) = ( 0g ‘ ( 𝑁 Mat 𝑅 ) ) ) → ( 𝑠 < 𝑛 → ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) = ( 0g ‘ 𝐶 ) ) ) ) |
80 |
79
|
ralimdva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) → ( ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑀 decompPMat 𝑛 ) = ( 0g ‘ ( 𝑁 Mat 𝑅 ) ) ) → ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) = ( 0g ‘ 𝐶 ) ) ) ) |
81 |
80
|
imp |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑀 decompPMat 𝑛 ) = ( 0g ‘ ( 𝑁 Mat 𝑅 ) ) ) ) → ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) = ( 0g ‘ 𝐶 ) ) ) |
82 |
3 17 23 44 45 81
|
gsummptnn0fz |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑀 decompPMat 𝑛 ) = ( 0g ‘ ( 𝑁 Mat 𝑅 ) ) ) ) → ( 𝐶 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ) ) = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ) ) ) |
83 |
16 82
|
eqtrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑀 decompPMat 𝑛 ) = ( 0g ‘ ( 𝑁 Mat 𝑅 ) ) ) ) → 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ) ) ) |
84 |
83
|
ex |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) → ( ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑀 decompPMat 𝑛 ) = ( 0g ‘ ( 𝑁 Mat 𝑅 ) ) ) → 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ) ) ) ) |
85 |
84
|
reximdva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ∃ 𝑠 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑀 decompPMat 𝑛 ) = ( 0g ‘ ( 𝑁 Mat 𝑅 ) ) ) → ∃ 𝑠 ∈ ℕ0 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ) ) ) ) |
86 |
14 85
|
mpd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ0 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ) ) ) |