| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmatcollpw.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
pmatcollpw.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
| 3 |
|
pmatcollpw.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 4 |
|
pmatcollpw.m |
⊢ ∗ = ( ·𝑠 ‘ 𝐶 ) |
| 5 |
|
pmatcollpw.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 6 |
|
pmatcollpw.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 7 |
|
pmatcollpw.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
| 8 |
1
|
ply1assa |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ AssAlg ) |
| 9 |
8
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑃 ∈ AssAlg ) |
| 10 |
9
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑃 ∈ AssAlg ) |
| 11 |
10
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝑃 ∈ AssAlg ) |
| 12 |
|
eqid |
⊢ ( 𝑁 Mat 𝑅 ) = ( 𝑁 Mat 𝑅 ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 14 |
|
eqid |
⊢ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) |
| 15 |
|
simp2 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝑎 ∈ 𝑁 ) |
| 16 |
|
simp3 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝑏 ∈ 𝑁 ) |
| 17 |
|
simp2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑅 ∈ CRing ) |
| 18 |
17
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑅 ∈ CRing ) |
| 19 |
|
simp3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑀 ∈ 𝐵 ) |
| 20 |
19
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑀 ∈ 𝐵 ) |
| 21 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
| 22 |
1 2 3 12 14
|
decpmatcl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝑛 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
| 23 |
18 20 21 22
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝑛 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
| 24 |
23
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝑀 decompPMat 𝑛 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
| 25 |
12 13 14 15 16 24
|
matecld |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) |
| 26 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 27 |
26
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
| 28 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 29 |
27 28
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 30 |
29
|
eqcomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( Scalar ‘ 𝑃 ) = 𝑅 ) |
| 31 |
30
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ 𝑅 ) ) |
| 32 |
31
|
eleq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↔ ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) ) |
| 33 |
32
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↔ ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) ) |
| 34 |
33
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ↔ ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) ) |
| 35 |
25 34
|
mpbird |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 36 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
| 37 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 38 |
1 6 36 5 37
|
ply1moncl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
| 39 |
27 38
|
sylan |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
| 40 |
39
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝑛 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
| 41 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
| 42 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
| 43 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
| 44 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
| 45 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
| 46 |
41 42 43 37 44 45
|
asclmul2 |
⊢ ( ( 𝑃 ∈ AssAlg ∧ ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑛 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑛 ↑ 𝑋 ) ( .r ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ) ) = ( ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ↑ 𝑋 ) ) ) |
| 47 |
11 35 40 46
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( ( 𝑛 ↑ 𝑋 ) ( .r ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ) ) = ( ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ↑ 𝑋 ) ) ) |
| 48 |
|
eqidd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ) ) ) |
| 49 |
|
oveq12 |
⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) = ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ) |
| 50 |
49
|
fveq2d |
⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ) ) |
| 51 |
50
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ∧ ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ) ) |
| 52 |
|
fvexd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ) ∈ V ) |
| 53 |
48 51 15 16 52
|
ovmpod |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ) ) 𝑏 ) = ( ( algSc ‘ 𝑃 ) ‘ ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ) ) |
| 54 |
53
|
eqcomd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ) = ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ) ) 𝑏 ) ) |
| 55 |
54
|
oveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( ( 𝑛 ↑ 𝑋 ) ( .r ‘ 𝑃 ) ( ( algSc ‘ 𝑃 ) ‘ ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ) ) = ( ( 𝑛 ↑ 𝑋 ) ( .r ‘ 𝑃 ) ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ) ) 𝑏 ) ) ) |
| 56 |
47 55
|
eqtr3d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ↑ 𝑋 ) ) = ( ( 𝑛 ↑ 𝑋 ) ( .r ‘ 𝑃 ) ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ) ) 𝑏 ) ) ) |
| 57 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 58 |
26 57
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ Ring ) |
| 59 |
58
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑃 ∈ Ring ) |
| 60 |
59
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑃 ∈ Ring ) |
| 61 |
60
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝑃 ∈ Ring ) |
| 62 |
|
simpl1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑁 ∈ Fin ) |
| 63 |
18 26
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
| 64 |
63
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
| 65 |
|
simp2 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ∈ 𝑁 ) |
| 66 |
|
simp3 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑗 ∈ 𝑁 ) |
| 67 |
23
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑀 decompPMat 𝑛 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
| 68 |
12 13 14 65 66 67
|
matecld |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
| 69 |
1 41 13 37
|
ply1sclcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 70 |
64 68 69
|
syl2anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 71 |
2 37 3 62 60 70
|
matbas2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ) ) ∈ 𝐵 ) |
| 72 |
39 71
|
jca |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ) ) ∈ 𝐵 ) ) |
| 73 |
72
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( ( 𝑛 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ) ) ∈ 𝐵 ) ) |
| 74 |
15 16
|
jca |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) |
| 75 |
2 3 37 4 44
|
matvscacell |
⊢ ( ( 𝑃 ∈ Ring ∧ ( ( 𝑛 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ) ) ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑎 ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ) ) ) 𝑏 ) = ( ( 𝑛 ↑ 𝑋 ) ( .r ‘ 𝑃 ) ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ) ) 𝑏 ) ) ) |
| 76 |
61 73 74 75
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝑎 ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ) ) ) 𝑏 ) = ( ( 𝑛 ↑ 𝑋 ) ( .r ‘ 𝑃 ) ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ) ) 𝑏 ) ) ) |
| 77 |
27
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
| 78 |
7 12 14 1 41
|
mat2pmatval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝑀 decompPMat 𝑛 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) → ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ) ) ) |
| 79 |
62 77 23 78
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ) ) ) |
| 80 |
79
|
eqcomd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ) ) = ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) |
| 81 |
80
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ) ) ) = ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ) |
| 82 |
81
|
oveqd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑎 ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ) ) ) 𝑏 ) = ( 𝑎 ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) 𝑏 ) ) |
| 83 |
82
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝑎 ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀 decompPMat 𝑛 ) 𝑗 ) ) ) ) 𝑏 ) = ( 𝑎 ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) 𝑏 ) ) |
| 84 |
56 76 83
|
3eqtr2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( ( 𝑎 ( 𝑀 decompPMat 𝑛 ) 𝑏 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ↑ 𝑋 ) ) = ( 𝑎 ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) 𝑏 ) ) |