Metamath Proof Explorer


Theorem pmatcollpwscmat

Description: Write a scalar matrix over polynomials (over a commutative ring) as a sum of the product of variable powers and constant scalar matrices with scalar entries. (Contributed by AV, 2-Nov-2019) (Revised by AV, 4-Dec-2019)

Ref Expression
Hypotheses pmatcollpwscmat.p 𝑃 = ( Poly1𝑅 )
pmatcollpwscmat.c 𝐶 = ( 𝑁 Mat 𝑃 )
pmatcollpwscmat.b 𝐵 = ( Base ‘ 𝐶 )
pmatcollpwscmat.m1 = ( ·𝑠𝐶 )
pmatcollpwscmat.e1 = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
pmatcollpwscmat.x 𝑋 = ( var1𝑅 )
pmatcollpwscmat.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
pmatcollpwscmat.a 𝐴 = ( 𝑁 Mat 𝑅 )
pmatcollpwscmat.d 𝐷 = ( Base ‘ 𝐴 )
pmatcollpwscmat.u 𝑈 = ( algSc ‘ 𝑃 )
pmatcollpwscmat.k 𝐾 = ( Base ‘ 𝑅 )
pmatcollpwscmat.e2 𝐸 = ( Base ‘ 𝑃 )
pmatcollpwscmat.s 𝑆 = ( algSc ‘ 𝑃 )
pmatcollpwscmat.1 1 = ( 1r𝐶 )
pmatcollpwscmat.m2 𝑀 = ( 𝑄 1 )
Assertion pmatcollpwscmat ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑄𝐸 ) → 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝑋 ) ( ( 𝑈 ‘ ( ( coe1𝑄 ) ‘ 𝑛 ) ) 1 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 pmatcollpwscmat.p 𝑃 = ( Poly1𝑅 )
2 pmatcollpwscmat.c 𝐶 = ( 𝑁 Mat 𝑃 )
3 pmatcollpwscmat.b 𝐵 = ( Base ‘ 𝐶 )
4 pmatcollpwscmat.m1 = ( ·𝑠𝐶 )
5 pmatcollpwscmat.e1 = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
6 pmatcollpwscmat.x 𝑋 = ( var1𝑅 )
7 pmatcollpwscmat.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
8 pmatcollpwscmat.a 𝐴 = ( 𝑁 Mat 𝑅 )
9 pmatcollpwscmat.d 𝐷 = ( Base ‘ 𝐴 )
10 pmatcollpwscmat.u 𝑈 = ( algSc ‘ 𝑃 )
11 pmatcollpwscmat.k 𝐾 = ( Base ‘ 𝑅 )
12 pmatcollpwscmat.e2 𝐸 = ( Base ‘ 𝑃 )
13 pmatcollpwscmat.s 𝑆 = ( algSc ‘ 𝑃 )
14 pmatcollpwscmat.1 1 = ( 1r𝐶 )
15 pmatcollpwscmat.m2 𝑀 = ( 𝑄 1 )
16 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
17 1 2 3 12 4 14 1pmatscmul ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄𝐸 ) → ( 𝑄 1 ) ∈ 𝐵 )
18 15 17 eqeltrid ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄𝐸 ) → 𝑀𝐵 )
19 16 18 syl3an2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑄𝐸 ) → 𝑀𝐵 )
20 1 2 3 4 5 6 7 pmatcollpw ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝑋 ) ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ) ) )
21 19 20 syld3an3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑄𝐸 ) → 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝑋 ) ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ) ) )
22 16 anim2i ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) )
23 22 3adant3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑄𝐸 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) )
24 simp3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑄𝐸 ) → 𝑄𝐸 )
25 24 anim1ci ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑄𝐸 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ∈ ℕ0𝑄𝐸 ) )
26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 pmatcollpwscmatlem2 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑛 ∈ ℕ0𝑄𝐸 ) ) → ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) = ( ( 𝑈 ‘ ( ( coe1𝑄 ) ‘ 𝑛 ) ) 1 ) )
27 23 25 26 syl2an2r ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑄𝐸 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) = ( ( 𝑈 ‘ ( ( coe1𝑄 ) ‘ 𝑛 ) ) 1 ) )
28 27 oveq2d ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑄𝐸 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 𝑋 ) ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) = ( ( 𝑛 𝑋 ) ( ( 𝑈 ‘ ( ( coe1𝑄 ) ‘ 𝑛 ) ) 1 ) ) )
29 28 mpteq2dva ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑄𝐸 ) → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝑋 ) ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝑋 ) ( ( 𝑈 ‘ ( ( coe1𝑄 ) ‘ 𝑛 ) ) 1 ) ) ) )
30 29 oveq2d ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑄𝐸 ) → ( 𝐶 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝑋 ) ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ) ) = ( 𝐶 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝑋 ) ( ( 𝑈 ‘ ( ( coe1𝑄 ) ‘ 𝑛 ) ) 1 ) ) ) ) )
31 21 30 eqtrd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑄𝐸 ) → 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝑋 ) ( ( 𝑈 ‘ ( ( coe1𝑄 ) ‘ 𝑛 ) ) 1 ) ) ) ) )