Step |
Hyp |
Ref |
Expression |
1 |
|
pmatcollpwscmat.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
pmatcollpwscmat.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
3 |
|
pmatcollpwscmat.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
4 |
|
pmatcollpwscmat.m1 |
⊢ ∗ = ( ·𝑠 ‘ 𝐶 ) |
5 |
|
pmatcollpwscmat.e1 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
6 |
|
pmatcollpwscmat.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
7 |
|
pmatcollpwscmat.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
8 |
|
pmatcollpwscmat.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
9 |
|
pmatcollpwscmat.d |
⊢ 𝐷 = ( Base ‘ 𝐴 ) |
10 |
|
pmatcollpwscmat.u |
⊢ 𝑈 = ( algSc ‘ 𝑃 ) |
11 |
|
pmatcollpwscmat.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
12 |
|
pmatcollpwscmat.e2 |
⊢ 𝐸 = ( Base ‘ 𝑃 ) |
13 |
|
pmatcollpwscmat.s |
⊢ 𝑆 = ( algSc ‘ 𝑃 ) |
14 |
|
pmatcollpwscmat.1 |
⊢ 1 = ( 1r ‘ 𝐶 ) |
15 |
|
pmatcollpwscmat.m2 |
⊢ 𝑀 = ( 𝑄 ∗ 1 ) |
16 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
17 |
1 2 3 12 4 14
|
1pmatscmul |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝐸 ) → ( 𝑄 ∗ 1 ) ∈ 𝐵 ) |
18 |
15 17
|
eqeltrid |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝐸 ) → 𝑀 ∈ 𝐵 ) |
19 |
16 18
|
syl3an2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑄 ∈ 𝐸 ) → 𝑀 ∈ 𝐵 ) |
20 |
1 2 3 4 5 6 7
|
pmatcollpw |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ) ) ) |
21 |
19 20
|
syld3an3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑄 ∈ 𝐸 ) → 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ) ) ) |
22 |
16
|
anim2i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
23 |
22
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑄 ∈ 𝐸 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
24 |
|
simp3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑄 ∈ 𝐸 ) → 𝑄 ∈ 𝐸 ) |
25 |
24
|
anim1ci |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑄 ∈ 𝐸 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) |
26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
pmatcollpwscmatlem2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) = ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝑛 ) ) ∗ 1 ) ) |
27 |
23 25 26
|
syl2an2r |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑄 ∈ 𝐸 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) = ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝑛 ) ) ∗ 1 ) ) |
28 |
27
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑄 ∈ 𝐸 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) = ( ( 𝑛 ↑ 𝑋 ) ∗ ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝑛 ) ) ∗ 1 ) ) ) |
29 |
28
|
mpteq2dva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑄 ∈ 𝐸 ) → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝑛 ) ) ∗ 1 ) ) ) ) |
30 |
29
|
oveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑄 ∈ 𝐸 ) → ( 𝐶 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( 𝑇 ‘ ( 𝑀 decompPMat 𝑛 ) ) ) ) ) = ( 𝐶 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝑛 ) ) ∗ 1 ) ) ) ) ) |
31 |
21 30
|
eqtrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑄 ∈ 𝐸 ) → 𝑀 = ( 𝐶 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) ∗ ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝑛 ) ) ∗ 1 ) ) ) ) ) |