Step |
Hyp |
Ref |
Expression |
1 |
|
pmatcollpwscmat.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
pmatcollpwscmat.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
3 |
|
pmatcollpwscmat.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
4 |
|
pmatcollpwscmat.m1 |
⊢ ∗ = ( ·𝑠 ‘ 𝐶 ) |
5 |
|
pmatcollpwscmat.e1 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
6 |
|
pmatcollpwscmat.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
7 |
|
pmatcollpwscmat.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
8 |
|
pmatcollpwscmat.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
9 |
|
pmatcollpwscmat.d |
⊢ 𝐷 = ( Base ‘ 𝐴 ) |
10 |
|
pmatcollpwscmat.u |
⊢ 𝑈 = ( algSc ‘ 𝑃 ) |
11 |
|
pmatcollpwscmat.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
12 |
|
pmatcollpwscmat.e2 |
⊢ 𝐸 = ( Base ‘ 𝑃 ) |
13 |
|
pmatcollpwscmat.s |
⊢ 𝑆 = ( algSc ‘ 𝑃 ) |
14 |
|
pmatcollpwscmat.1 |
⊢ 1 = ( 1r ‘ 𝐶 ) |
15 |
|
pmatcollpwscmat.m2 |
⊢ 𝑀 = ( 𝑄 ∗ 1 ) |
16 |
|
simpl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
17 |
|
simpr |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑅 ∈ Ring ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → 𝑅 ∈ Ring ) |
19 |
|
simpr |
⊢ ( ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) → 𝑄 ∈ 𝐸 ) |
20 |
19
|
anim2i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑄 ∈ 𝐸 ) ) |
21 |
|
df-3an |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝐸 ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑄 ∈ 𝐸 ) ) |
22 |
20 21
|
sylibr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝐸 ) ) |
23 |
1 2 3 12 4 14
|
1pmatscmul |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝐸 ) → ( 𝑄 ∗ 1 ) ∈ 𝐵 ) |
24 |
15 23
|
eqeltrid |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝐸 ) → 𝑀 ∈ 𝐵 ) |
25 |
22 24
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → 𝑀 ∈ 𝐵 ) |
26 |
|
simprl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → 𝐿 ∈ ℕ0 ) |
27 |
1 2 3 8 9
|
decpmatcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝐿 ) ∈ 𝐷 ) |
28 |
18 25 26 27
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑀 decompPMat 𝐿 ) ∈ 𝐷 ) |
29 |
|
df-3an |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝑀 decompPMat 𝐿 ) ∈ 𝐷 ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 decompPMat 𝐿 ) ∈ 𝐷 ) ) |
30 |
16 28 29
|
sylanbrc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝑀 decompPMat 𝐿 ) ∈ 𝐷 ) ) |
31 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
32 |
7 8 9 1 31
|
mat2pmatval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝑀 decompPMat 𝐿 ) ∈ 𝐷 ) → ( 𝑇 ‘ ( 𝑀 decompPMat 𝐿 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀 decompPMat 𝐿 ) 𝑗 ) ) ) ) |
33 |
30 32
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑇 ‘ ( 𝑀 decompPMat 𝐿 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀 decompPMat 𝐿 ) 𝑗 ) ) ) ) |
34 |
18 25 26
|
3jca |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝐿 ∈ ℕ0 ) ) |
35 |
34
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝐿 ∈ ℕ0 ) ) |
36 |
|
3simpc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) |
37 |
1 2 3
|
decpmate |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝐿 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 ( 𝑀 decompPMat 𝐿 ) 𝑗 ) = ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ) |
38 |
35 36 37
|
syl2anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 ( 𝑀 decompPMat 𝐿 ) 𝑗 ) = ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ) |
39 |
38
|
fveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀 decompPMat 𝐿 ) 𝑗 ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ) ) |
40 |
39
|
mpoeq3dva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀 decompPMat 𝐿 ) 𝑗 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ) ) ) |
41 |
|
simp1lr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
42 |
|
simp2 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ∈ 𝑁 ) |
43 |
|
simp3 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑗 ∈ 𝑁 ) |
44 |
25
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑀 ∈ 𝐵 ) |
45 |
2 12 3 42 43 44
|
matecld |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 𝑀 𝑗 ) ∈ 𝐸 ) |
46 |
26
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝐿 ∈ ℕ0 ) |
47 |
|
eqid |
⊢ ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) = ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) |
48 |
47 12 1 11
|
coe1fvalcl |
⊢ ( ( ( 𝑖 𝑀 𝑗 ) ∈ 𝐸 ∧ 𝐿 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ∈ 𝐾 ) |
49 |
45 46 48
|
syl2anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ∈ 𝐾 ) |
50 |
|
eqid |
⊢ ( var1 ‘ 𝑅 ) = ( var1 ‘ 𝑅 ) |
51 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
52 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
53 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
54 |
11 1 50 51 52 53 31
|
ply1scltm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ∈ 𝐾 ) → ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ) = ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
55 |
41 49 54
|
syl2anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ) = ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
56 |
55
|
mpoeq3dva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) |
57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
pmatcollpwscmatlem1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = if ( 𝑎 = 𝑏 , ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) , ( 0g ‘ 𝑃 ) ) ) |
58 |
|
eqidd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) |
59 |
|
oveq12 |
⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → ( 𝑖 𝑀 𝑗 ) = ( 𝑎 𝑀 𝑏 ) ) |
60 |
59
|
fveq2d |
⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) = ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ) |
61 |
60
|
fveq1d |
⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) = ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) ) |
62 |
61
|
oveq1d |
⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
63 |
62
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) ) → ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
64 |
|
simprl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → 𝑎 ∈ 𝑁 ) |
65 |
|
simprr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → 𝑏 ∈ 𝑁 ) |
66 |
|
ovexd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ V ) |
67 |
58 63 64 65 66
|
ovmpod |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) 𝑏 ) = ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
68 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → 𝑁 ∈ Fin ) |
69 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
70 |
69
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑃 ∈ Ring ) |
71 |
70
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → 𝑃 ∈ Ring ) |
72 |
|
pm3.22 |
⊢ ( ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) → ( 𝑄 ∈ 𝐸 ∧ 𝐿 ∈ ℕ0 ) ) |
73 |
72
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑄 ∈ 𝐸 ∧ 𝐿 ∈ ℕ0 ) ) |
74 |
|
eqid |
⊢ ( coe1 ‘ 𝑄 ) = ( coe1 ‘ 𝑄 ) |
75 |
74 12 1 11
|
coe1fvalcl |
⊢ ( ( 𝑄 ∈ 𝐸 ∧ 𝐿 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ∈ 𝐾 ) |
76 |
73 75
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ∈ 𝐾 ) |
77 |
1 10 11 12
|
ply1sclcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ∈ 𝐾 ) → ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∈ 𝐸 ) |
78 |
18 76 77
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∈ 𝐸 ) |
79 |
68 71 78
|
3jca |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∈ 𝐸 ) ) |
80 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
81 |
2 12 80 14 4
|
scmatscmide |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ∧ ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∈ 𝐸 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑎 ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∗ 1 ) 𝑏 ) = if ( 𝑎 = 𝑏 , ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) , ( 0g ‘ 𝑃 ) ) ) |
82 |
79 81
|
sylan |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑎 ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∗ 1 ) 𝑏 ) = if ( 𝑎 = 𝑏 , ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) , ( 0g ‘ 𝑃 ) ) ) |
83 |
57 67 82
|
3eqtr4d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) 𝑏 ) = ( 𝑎 ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∗ 1 ) 𝑏 ) ) |
84 |
83
|
ralrimivva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ∀ 𝑎 ∈ 𝑁 ∀ 𝑏 ∈ 𝑁 ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) 𝑏 ) = ( 𝑎 ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∗ 1 ) 𝑏 ) ) |
85 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
86 |
85
|
a1i |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 0 ∈ ℕ0 ) |
87 |
11 1 50 51 52 53 12
|
ply1tmcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ∈ 𝐾 ∧ 0 ∈ ℕ0 ) → ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ 𝐸 ) |
88 |
41 49 86 87
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ 𝐸 ) |
89 |
2 12 3 68 71 88
|
matbas2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ∈ 𝐵 ) |
90 |
1 2 3 12 4 14
|
1pmatscmul |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∈ 𝐸 ) → ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∗ 1 ) ∈ 𝐵 ) |
91 |
68 18 78 90
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∗ 1 ) ∈ 𝐵 ) |
92 |
2 3
|
eqmat |
⊢ ( ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ∈ 𝐵 ∧ ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∗ 1 ) ∈ 𝐵 ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) = ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∗ 1 ) ↔ ∀ 𝑎 ∈ 𝑁 ∀ 𝑏 ∈ 𝑁 ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) 𝑏 ) = ( 𝑎 ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∗ 1 ) 𝑏 ) ) ) |
93 |
89 91 92
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) = ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∗ 1 ) ↔ ∀ 𝑎 ∈ 𝑁 ∀ 𝑏 ∈ 𝑁 ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) 𝑏 ) = ( 𝑎 ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∗ 1 ) 𝑏 ) ) ) |
94 |
84 93
|
mpbird |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) = ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∗ 1 ) ) |
95 |
56 94
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ) ) = ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∗ 1 ) ) |
96 |
33 40 95
|
3eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐿 ∈ ℕ0 ∧ 𝑄 ∈ 𝐸 ) ) → ( 𝑇 ‘ ( 𝑀 decompPMat 𝐿 ) ) = ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ∗ 1 ) ) |