| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pmatcollpwscmat.p | 
							⊢ 𝑃  =  ( Poly1 ‘ 𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							pmatcollpwscmat.c | 
							⊢ 𝐶  =  ( 𝑁  Mat  𝑃 )  | 
						
						
							| 3 | 
							
								
							 | 
							pmatcollpwscmat.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐶 )  | 
						
						
							| 4 | 
							
								
							 | 
							pmatcollpwscmat.m1 | 
							⊢  ∗   =  (  ·𝑠  ‘ 𝐶 )  | 
						
						
							| 5 | 
							
								
							 | 
							pmatcollpwscmat.e1 | 
							⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							pmatcollpwscmat.x | 
							⊢ 𝑋  =  ( var1 ‘ 𝑅 )  | 
						
						
							| 7 | 
							
								
							 | 
							pmatcollpwscmat.t | 
							⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 )  | 
						
						
							| 8 | 
							
								
							 | 
							pmatcollpwscmat.a | 
							⊢ 𝐴  =  ( 𝑁  Mat  𝑅 )  | 
						
						
							| 9 | 
							
								
							 | 
							pmatcollpwscmat.d | 
							⊢ 𝐷  =  ( Base ‘ 𝐴 )  | 
						
						
							| 10 | 
							
								
							 | 
							pmatcollpwscmat.u | 
							⊢ 𝑈  =  ( algSc ‘ 𝑃 )  | 
						
						
							| 11 | 
							
								
							 | 
							pmatcollpwscmat.k | 
							⊢ 𝐾  =  ( Base ‘ 𝑅 )  | 
						
						
							| 12 | 
							
								
							 | 
							pmatcollpwscmat.e2 | 
							⊢ 𝐸  =  ( Base ‘ 𝑃 )  | 
						
						
							| 13 | 
							
								
							 | 
							pmatcollpwscmat.s | 
							⊢ 𝑆  =  ( algSc ‘ 𝑃 )  | 
						
						
							| 14 | 
							
								
							 | 
							pmatcollpwscmat.1 | 
							⊢  1   =  ( 1r ‘ 𝐶 )  | 
						
						
							| 15 | 
							
								
							 | 
							pmatcollpwscmat.m2 | 
							⊢ 𝑀  =  ( 𝑄  ∗   1  )  | 
						
						
							| 16 | 
							
								
							 | 
							simpl | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) )  | 
						
						
							| 17 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑅  ∈  Ring )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantr | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  𝑅  ∈  Ring )  | 
						
						
							| 19 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 )  →  𝑄  ∈  𝐸 )  | 
						
						
							| 20 | 
							
								19
							 | 
							anim2i | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑄  ∈  𝐸 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							df-3an | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑄  ∈  𝐸 )  ↔  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑄  ∈  𝐸 ) )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							sylibr | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑄  ∈  𝐸 ) )  | 
						
						
							| 23 | 
							
								1 2 3 12 4 14
							 | 
							1pmatscmul | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑄  ∈  𝐸 )  →  ( 𝑄  ∗   1  )  ∈  𝐵 )  | 
						
						
							| 24 | 
							
								15 23
							 | 
							eqeltrid | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑄  ∈  𝐸 )  →  𝑀  ∈  𝐵 )  | 
						
						
							| 25 | 
							
								22 24
							 | 
							syl | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  𝑀  ∈  𝐵 )  | 
						
						
							| 26 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  𝐿  ∈  ℕ0 )  | 
						
						
							| 27 | 
							
								1 2 3 8 9
							 | 
							decpmatcl | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵  ∧  𝐿  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝐿 )  ∈  𝐷 )  | 
						
						
							| 28 | 
							
								18 25 26 27
							 | 
							syl3anc | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑀  decompPMat  𝐿 )  ∈  𝐷 )  | 
						
						
							| 29 | 
							
								
							 | 
							df-3an | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑀  decompPMat  𝐿 )  ∈  𝐷 )  ↔  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  decompPMat  𝐿 )  ∈  𝐷 ) )  | 
						
						
							| 30 | 
							
								16 28 29
							 | 
							sylanbrc | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑀  decompPMat  𝐿 )  ∈  𝐷 ) )  | 
						
						
							| 31 | 
							
								
							 | 
							eqid | 
							⊢ ( algSc ‘ 𝑃 )  =  ( algSc ‘ 𝑃 )  | 
						
						
							| 32 | 
							
								7 8 9 1 31
							 | 
							mat2pmatval | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑀  decompPMat  𝐿 )  ∈  𝐷 )  →  ( 𝑇 ‘ ( 𝑀  decompPMat  𝐿 ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀  decompPMat  𝐿 ) 𝑗 ) ) ) )  | 
						
						
							| 33 | 
							
								30 32
							 | 
							syl | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑇 ‘ ( 𝑀  decompPMat  𝐿 ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀  decompPMat  𝐿 ) 𝑗 ) ) ) )  | 
						
						
							| 34 | 
							
								18 25 26
							 | 
							3jca | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵  ∧  𝐿  ∈  ℕ0 ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							3ad2ant1 | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵  ∧  𝐿  ∈  ℕ0 ) )  | 
						
						
							| 36 | 
							
								
							 | 
							3simpc | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  | 
						
						
							| 37 | 
							
								1 2 3
							 | 
							decpmate | 
							⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵  ∧  𝐿  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖 ( 𝑀  decompPMat  𝐿 ) 𝑗 )  =  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) )  | 
						
						
							| 38 | 
							
								35 36 37
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 ( 𝑀  decompPMat  𝐿 ) 𝑗 )  =  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							fveq2d | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀  decompPMat  𝐿 ) 𝑗 ) )  =  ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							mpoeq3dva | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( 𝑖 ( 𝑀  decompPMat  𝐿 ) 𝑗 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ) ) )  | 
						
						
							| 41 | 
							
								
							 | 
							simp1lr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑅  ∈  Ring )  | 
						
						
							| 42 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑖  ∈  𝑁 )  | 
						
						
							| 43 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑗  ∈  𝑁 )  | 
						
						
							| 44 | 
							
								25
							 | 
							3ad2ant1 | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑀  ∈  𝐵 )  | 
						
						
							| 45 | 
							
								2 12 3 42 43 44
							 | 
							matecld | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 𝑀 𝑗 )  ∈  𝐸 )  | 
						
						
							| 46 | 
							
								26
							 | 
							3ad2ant1 | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝐿  ∈  ℕ0 )  | 
						
						
							| 47 | 
							
								
							 | 
							eqid | 
							⊢ ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  =  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  | 
						
						
							| 48 | 
							
								47 12 1 11
							 | 
							coe1fvalcl | 
							⊢ ( ( ( 𝑖 𝑀 𝑗 )  ∈  𝐸  ∧  𝐿  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 )  ∈  𝐾 )  | 
						
						
							| 49 | 
							
								45 46 48
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 )  ∈  𝐾 )  | 
						
						
							| 50 | 
							
								
							 | 
							eqid | 
							⊢ ( var1 ‘ 𝑅 )  =  ( var1 ‘ 𝑅 )  | 
						
						
							| 51 | 
							
								
							 | 
							eqid | 
							⊢ (  ·𝑠  ‘ 𝑃 )  =  (  ·𝑠  ‘ 𝑃 )  | 
						
						
							| 52 | 
							
								
							 | 
							eqid | 
							⊢ ( mulGrp ‘ 𝑃 )  =  ( mulGrp ‘ 𝑃 )  | 
						
						
							| 53 | 
							
								
							 | 
							eqid | 
							⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) )  =  ( .g ‘ ( mulGrp ‘ 𝑃 ) )  | 
						
						
							| 54 | 
							
								11 1 50 51 52 53 31
							 | 
							ply1scltm | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 )  ∈  𝐾 )  →  ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) )  =  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) )  | 
						
						
							| 55 | 
							
								41 49 54
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) )  =  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							mpoeq3dva | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) )  | 
						
						
							| 57 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
							 | 
							pmatcollpwscmatlem1 | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) )  =  if ( 𝑎  =  𝑏 ,  ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ,  ( 0g ‘ 𝑃 ) ) )  | 
						
						
							| 58 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) )  | 
						
						
							| 59 | 
							
								
							 | 
							oveq12 | 
							⊢ ( ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 )  →  ( 𝑖 𝑀 𝑗 )  =  ( 𝑎 𝑀 𝑏 ) )  | 
						
						
							| 60 | 
							
								59
							 | 
							fveq2d | 
							⊢ ( ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 )  →  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  =  ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							fveq1d | 
							⊢ ( ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 )  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 )  =  ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							oveq1d | 
							⊢ ( ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 )  →  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) )  =  ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							adantl | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 ) )  →  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) )  =  ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) )  | 
						
						
							| 64 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑎  ∈  𝑁 )  | 
						
						
							| 65 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑏  ∈  𝑁 )  | 
						
						
							| 66 | 
							
								
							 | 
							ovexd | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) )  ∈  V )  | 
						
						
							| 67 | 
							
								58 63 64 65 66
							 | 
							ovmpod | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) 𝑏 )  =  ( ( ( coe1 ‘ ( 𝑎 𝑀 𝑏 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) )  | 
						
						
							| 68 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  𝑁  ∈  Fin )  | 
						
						
							| 69 | 
							
								1
							 | 
							ply1ring | 
							⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring )  | 
						
						
							| 70 | 
							
								69
							 | 
							adantl | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑃  ∈  Ring )  | 
						
						
							| 71 | 
							
								70
							 | 
							adantr | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  𝑃  ∈  Ring )  | 
						
						
							| 72 | 
							
								
							 | 
							pm3.22 | 
							⊢ ( ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 )  →  ( 𝑄  ∈  𝐸  ∧  𝐿  ∈  ℕ0 ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							adantl | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑄  ∈  𝐸  ∧  𝐿  ∈  ℕ0 ) )  | 
						
						
							| 74 | 
							
								
							 | 
							eqid | 
							⊢ ( coe1 ‘ 𝑄 )  =  ( coe1 ‘ 𝑄 )  | 
						
						
							| 75 | 
							
								74 12 1 11
							 | 
							coe1fvalcl | 
							⊢ ( ( 𝑄  ∈  𝐸  ∧  𝐿  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 )  ∈  𝐾 )  | 
						
						
							| 76 | 
							
								73 75
							 | 
							syl | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 )  ∈  𝐾 )  | 
						
						
							| 77 | 
							
								1 10 11 12
							 | 
							ply1sclcl | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 )  ∈  𝐾 )  →  ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∈  𝐸 )  | 
						
						
							| 78 | 
							
								18 76 77
							 | 
							syl2anc | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∈  𝐸 )  | 
						
						
							| 79 | 
							
								68 71 78
							 | 
							3jca | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring  ∧  ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∈  𝐸 ) )  | 
						
						
							| 80 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝑃 )  =  ( 0g ‘ 𝑃 )  | 
						
						
							| 81 | 
							
								2 12 80 14 4
							 | 
							scmatscmide | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring  ∧  ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∈  𝐸 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎 ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∗   1  ) 𝑏 )  =  if ( 𝑎  =  𝑏 ,  ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ,  ( 0g ‘ 𝑃 ) ) )  | 
						
						
							| 82 | 
							
								79 81
							 | 
							sylan | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎 ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∗   1  ) 𝑏 )  =  if ( 𝑎  =  𝑏 ,  ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) ) ,  ( 0g ‘ 𝑃 ) ) )  | 
						
						
							| 83 | 
							
								57 67 82
							 | 
							3eqtr4d | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) 𝑏 )  =  ( 𝑎 ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∗   1  ) 𝑏 ) )  | 
						
						
							| 84 | 
							
								83
							 | 
							ralrimivva | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) 𝑏 )  =  ( 𝑎 ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∗   1  ) 𝑏 ) )  | 
						
						
							| 85 | 
							
								
							 | 
							0nn0 | 
							⊢ 0  ∈  ℕ0  | 
						
						
							| 86 | 
							
								85
							 | 
							a1i | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  0  ∈  ℕ0 )  | 
						
						
							| 87 | 
							
								11 1 50 51 52 53 12
							 | 
							ply1tmcl | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 )  ∈  𝐾  ∧  0  ∈  ℕ0 )  →  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) )  ∈  𝐸 )  | 
						
						
							| 88 | 
							
								41 49 86 87
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) )  ∈  𝐸 )  | 
						
						
							| 89 | 
							
								2 12 3 68 71 88
							 | 
							matbas2d | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) )  ∈  𝐵 )  | 
						
						
							| 90 | 
							
								1 2 3 12 4 14
							 | 
							1pmatscmul | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∈  𝐸 )  →  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∗   1  )  ∈  𝐵 )  | 
						
						
							| 91 | 
							
								68 18 78 90
							 | 
							syl3anc | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∗   1  )  ∈  𝐵 )  | 
						
						
							| 92 | 
							
								2 3
							 | 
							eqmat | 
							⊢ ( ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) )  ∈  𝐵  ∧  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∗   1  )  ∈  𝐵 )  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) )  =  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∗   1  )  ↔  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) 𝑏 )  =  ( 𝑎 ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∗   1  ) 𝑏 ) ) )  | 
						
						
							| 93 | 
							
								89 91 92
							 | 
							syl2anc | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) )  =  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∗   1  )  ↔  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) 𝑏 )  =  ( 𝑎 ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∗   1  ) 𝑏 ) ) )  | 
						
						
							| 94 | 
							
								84 93
							 | 
							mpbird | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) )  =  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∗   1  ) )  | 
						
						
							| 95 | 
							
								56 94
							 | 
							eqtrd | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐿 ) ) )  =  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∗   1  ) )  | 
						
						
							| 96 | 
							
								33 40 95
							 | 
							3eqtrd | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝐿  ∈  ℕ0  ∧  𝑄  ∈  𝐸 ) )  →  ( 𝑇 ‘ ( 𝑀  decompPMat  𝐿 ) )  =  ( ( 𝑈 ‘ ( ( coe1 ‘ 𝑄 ) ‘ 𝐿 ) )  ∗   1  ) )  |