Metamath Proof Explorer
Description: The set of polynomial matrices over a ring is a left module.
(Contributed by AV, 6-Nov-2019)
|
|
Ref |
Expression |
|
Hypotheses |
pmatring.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
|
|
pmatring.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
|
Assertion |
pmatlmod |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ LMod ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmatring.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
pmatring.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
| 3 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 4 |
2
|
matlmod |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) → 𝐶 ∈ LMod ) |
| 5 |
3 4
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ LMod ) |