Metamath Proof Explorer


Theorem pmex

Description: The class of all partial functions from one set to another is a set. (Contributed by NM, 15-Nov-2007)

Ref Expression
Assertion pmex ( ( 𝐴𝐶𝐵𝐷 ) → { 𝑓 ∣ ( Fun 𝑓𝑓 ⊆ ( 𝐴 × 𝐵 ) ) } ∈ V )

Proof

Step Hyp Ref Expression
1 ancom ( ( Fun 𝑓𝑓 ⊆ ( 𝐴 × 𝐵 ) ) ↔ ( 𝑓 ⊆ ( 𝐴 × 𝐵 ) ∧ Fun 𝑓 ) )
2 1 abbii { 𝑓 ∣ ( Fun 𝑓𝑓 ⊆ ( 𝐴 × 𝐵 ) ) } = { 𝑓 ∣ ( 𝑓 ⊆ ( 𝐴 × 𝐵 ) ∧ Fun 𝑓 ) }
3 xpexg ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐴 × 𝐵 ) ∈ V )
4 abssexg ( ( 𝐴 × 𝐵 ) ∈ V → { 𝑓 ∣ ( 𝑓 ⊆ ( 𝐴 × 𝐵 ) ∧ Fun 𝑓 ) } ∈ V )
5 3 4 syl ( ( 𝐴𝐶𝐵𝐷 ) → { 𝑓 ∣ ( 𝑓 ⊆ ( 𝐴 × 𝐵 ) ∧ Fun 𝑓 ) } ∈ V )
6 2 5 eqeltrid ( ( 𝐴𝐶𝐵𝐷 ) → { 𝑓 ∣ ( Fun 𝑓𝑓 ⊆ ( 𝐴 × 𝐵 ) ) } ∈ V )