Description: The class of all partial functions from one set to another is a set. (Contributed by NM, 15-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pmex | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → { 𝑓 ∣ ( Fun 𝑓 ∧ 𝑓 ⊆ ( 𝐴 × 𝐵 ) ) } ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom | ⊢ ( ( Fun 𝑓 ∧ 𝑓 ⊆ ( 𝐴 × 𝐵 ) ) ↔ ( 𝑓 ⊆ ( 𝐴 × 𝐵 ) ∧ Fun 𝑓 ) ) | |
| 2 | 1 | abbii | ⊢ { 𝑓 ∣ ( Fun 𝑓 ∧ 𝑓 ⊆ ( 𝐴 × 𝐵 ) ) } = { 𝑓 ∣ ( 𝑓 ⊆ ( 𝐴 × 𝐵 ) ∧ Fun 𝑓 ) } |
| 3 | xpexg | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐴 × 𝐵 ) ∈ V ) | |
| 4 | abssexg | ⊢ ( ( 𝐴 × 𝐵 ) ∈ V → { 𝑓 ∣ ( 𝑓 ⊆ ( 𝐴 × 𝐵 ) ∧ Fun 𝑓 ) } ∈ V ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → { 𝑓 ∣ ( 𝑓 ⊆ ( 𝐴 × 𝐵 ) ∧ Fun 𝑓 ) } ∈ V ) |
| 6 | 2 5 | eqeltrid | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → { 𝑓 ∣ ( Fun 𝑓 ∧ 𝑓 ⊆ ( 𝐴 × 𝐵 ) ) } ∈ V ) |