Description: A partial function is a function. (Contributed by Mario Carneiro, 30-Jan-2014) (Revised by Mario Carneiro, 26-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | pmfun | ⊢ ( 𝐹 ∈ ( 𝐴 ↑pm 𝐵 ) → Fun 𝐹 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpmi | ⊢ ( 𝐹 ∈ ( 𝐴 ↑pm 𝐵 ) → ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ dom 𝐹 ⊆ 𝐵 ) ) | |
2 | ffun | ⊢ ( 𝐹 : dom 𝐹 ⟶ 𝐴 → Fun 𝐹 ) | |
3 | 2 | adantr | ⊢ ( ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ dom 𝐹 ⊆ 𝐵 ) → Fun 𝐹 ) |
4 | 1 3 | syl | ⊢ ( 𝐹 ∈ ( 𝐴 ↑pm 𝐵 ) → Fun 𝐹 ) |