Metamath Proof Explorer


Theorem pmfun

Description: A partial function is a function. (Contributed by Mario Carneiro, 30-Jan-2014) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion pmfun ( 𝐹 ∈ ( 𝐴pm 𝐵 ) → Fun 𝐹 )

Proof

Step Hyp Ref Expression
1 elpmi ( 𝐹 ∈ ( 𝐴pm 𝐵 ) → ( 𝐹 : dom 𝐹𝐴 ∧ dom 𝐹𝐵 ) )
2 ffun ( 𝐹 : dom 𝐹𝐴 → Fun 𝐹 )
3 2 adantr ( ( 𝐹 : dom 𝐹𝐴 ∧ dom 𝐹𝐵 ) → Fun 𝐹 )
4 1 3 syl ( 𝐹 ∈ ( 𝐴pm 𝐵 ) → Fun 𝐹 )