Description: The ring of polynomial matrices over a ring is isomorphic to the ring of polynomials over matrices of the same dimension over the same ring. (Contributed by AV, 30-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pmmpric.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
pmmpric.c | ⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) | ||
pmmpric.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | ||
pmmpric.q | ⊢ 𝑄 = ( Poly1 ‘ 𝐴 ) | ||
Assertion | pmmpric | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ≃𝑟 𝑄 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmmpric.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
2 | pmmpric.c | ⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) | |
3 | pmmpric.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
4 | pmmpric.q | ⊢ 𝑄 = ( Poly1 ‘ 𝐴 ) | |
5 | eqid | ⊢ ( 𝑁 pMatToMatPoly 𝑅 ) = ( 𝑁 pMatToMatPoly 𝑅 ) | |
6 | 1 2 3 4 5 | pm2mprngiso | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑁 pMatToMatPoly 𝑅 ) ∈ ( 𝐶 RingIso 𝑄 ) ) |
7 | 6 | ne0d | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝐶 RingIso 𝑄 ) ≠ ∅ ) |
8 | brric | ⊢ ( 𝐶 ≃𝑟 𝑄 ↔ ( 𝐶 RingIso 𝑄 ) ≠ ∅ ) | |
9 | 7 8 | sylibr | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ≃𝑟 𝑄 ) |