Metamath Proof Explorer


Theorem pmmpric

Description: The ring of polynomial matrices over a ring is isomorphic to the ring of polynomials over matrices of the same dimension over the same ring. (Contributed by AV, 30-Dec-2019)

Ref Expression
Hypotheses pmmpric.p 𝑃 = ( Poly1𝑅 )
pmmpric.c 𝐶 = ( 𝑁 Mat 𝑃 )
pmmpric.a 𝐴 = ( 𝑁 Mat 𝑅 )
pmmpric.q 𝑄 = ( Poly1𝐴 )
Assertion pmmpric ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶𝑟 𝑄 )

Proof

Step Hyp Ref Expression
1 pmmpric.p 𝑃 = ( Poly1𝑅 )
2 pmmpric.c 𝐶 = ( 𝑁 Mat 𝑃 )
3 pmmpric.a 𝐴 = ( 𝑁 Mat 𝑅 )
4 pmmpric.q 𝑄 = ( Poly1𝐴 )
5 eqid ( 𝑁 pMatToMatPoly 𝑅 ) = ( 𝑁 pMatToMatPoly 𝑅 )
6 1 2 3 4 5 pm2mprngiso ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑁 pMatToMatPoly 𝑅 ) ∈ ( 𝐶 RingIso 𝑄 ) )
7 6 ne0d ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝐶 RingIso 𝑄 ) ≠ ∅ )
8 brric ( 𝐶𝑟 𝑄 ↔ ( 𝐶 RingIso 𝑄 ) ≠ ∅ )
9 7 8 sylibr ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶𝑟 𝑄 )