Metamath Proof Explorer


Theorem pmod2iN

Description: Dual of the modular law. (Contributed by NM, 8-Apr-2012) (New usage is discouraged.)

Ref Expression
Hypotheses pmod.a 𝐴 = ( Atoms ‘ 𝐾 )
pmod.s 𝑆 = ( PSubSp ‘ 𝐾 )
pmod.p + = ( +𝑃𝐾 )
Assertion pmod2iN ( ( 𝐾 ∈ HL ∧ ( 𝑋𝑆𝑌𝐴𝑍𝐴 ) ) → ( 𝑍𝑋 → ( ( 𝑋𝑌 ) + 𝑍 ) = ( 𝑋 ∩ ( 𝑌 + 𝑍 ) ) ) )

Proof

Step Hyp Ref Expression
1 pmod.a 𝐴 = ( Atoms ‘ 𝐾 )
2 pmod.s 𝑆 = ( PSubSp ‘ 𝐾 )
3 pmod.p + = ( +𝑃𝐾 )
4 incom ( 𝑋𝑌 ) = ( 𝑌𝑋 )
5 4 oveq1i ( ( 𝑋𝑌 ) + 𝑍 ) = ( ( 𝑌𝑋 ) + 𝑍 )
6 hllat ( 𝐾 ∈ HL → 𝐾 ∈ Lat )
7 6 3ad2ant1 ( ( 𝐾 ∈ HL ∧ ( 𝑋𝑆𝑌𝐴𝑍𝐴 ) ∧ 𝑍𝑋 ) → 𝐾 ∈ Lat )
8 simp22 ( ( 𝐾 ∈ HL ∧ ( 𝑋𝑆𝑌𝐴𝑍𝐴 ) ∧ 𝑍𝑋 ) → 𝑌𝐴 )
9 ssinss1 ( 𝑌𝐴 → ( 𝑌𝑋 ) ⊆ 𝐴 )
10 8 9 syl ( ( 𝐾 ∈ HL ∧ ( 𝑋𝑆𝑌𝐴𝑍𝐴 ) ∧ 𝑍𝑋 ) → ( 𝑌𝑋 ) ⊆ 𝐴 )
11 simp23 ( ( 𝐾 ∈ HL ∧ ( 𝑋𝑆𝑌𝐴𝑍𝐴 ) ∧ 𝑍𝑋 ) → 𝑍𝐴 )
12 1 3 paddcom ( ( 𝐾 ∈ Lat ∧ ( 𝑌𝑋 ) ⊆ 𝐴𝑍𝐴 ) → ( ( 𝑌𝑋 ) + 𝑍 ) = ( 𝑍 + ( 𝑌𝑋 ) ) )
13 7 10 11 12 syl3anc ( ( 𝐾 ∈ HL ∧ ( 𝑋𝑆𝑌𝐴𝑍𝐴 ) ∧ 𝑍𝑋 ) → ( ( 𝑌𝑋 ) + 𝑍 ) = ( 𝑍 + ( 𝑌𝑋 ) ) )
14 5 13 eqtrid ( ( 𝐾 ∈ HL ∧ ( 𝑋𝑆𝑌𝐴𝑍𝐴 ) ∧ 𝑍𝑋 ) → ( ( 𝑋𝑌 ) + 𝑍 ) = ( 𝑍 + ( 𝑌𝑋 ) ) )
15 simp21 ( ( 𝐾 ∈ HL ∧ ( 𝑋𝑆𝑌𝐴𝑍𝐴 ) ∧ 𝑍𝑋 ) → 𝑋𝑆 )
16 11 8 15 3jca ( ( 𝐾 ∈ HL ∧ ( 𝑋𝑆𝑌𝐴𝑍𝐴 ) ∧ 𝑍𝑋 ) → ( 𝑍𝐴𝑌𝐴𝑋𝑆 ) )
17 1 2 3 pmod1i ( ( 𝐾 ∈ HL ∧ ( 𝑍𝐴𝑌𝐴𝑋𝑆 ) ) → ( 𝑍𝑋 → ( ( 𝑍 + 𝑌 ) ∩ 𝑋 ) = ( 𝑍 + ( 𝑌𝑋 ) ) ) )
18 17 3impia ( ( 𝐾 ∈ HL ∧ ( 𝑍𝐴𝑌𝐴𝑋𝑆 ) ∧ 𝑍𝑋 ) → ( ( 𝑍 + 𝑌 ) ∩ 𝑋 ) = ( 𝑍 + ( 𝑌𝑋 ) ) )
19 16 18 syld3an2 ( ( 𝐾 ∈ HL ∧ ( 𝑋𝑆𝑌𝐴𝑍𝐴 ) ∧ 𝑍𝑋 ) → ( ( 𝑍 + 𝑌 ) ∩ 𝑋 ) = ( 𝑍 + ( 𝑌𝑋 ) ) )
20 1 3 paddcom ( ( 𝐾 ∈ Lat ∧ 𝑍𝐴𝑌𝐴 ) → ( 𝑍 + 𝑌 ) = ( 𝑌 + 𝑍 ) )
21 7 11 8 20 syl3anc ( ( 𝐾 ∈ HL ∧ ( 𝑋𝑆𝑌𝐴𝑍𝐴 ) ∧ 𝑍𝑋 ) → ( 𝑍 + 𝑌 ) = ( 𝑌 + 𝑍 ) )
22 21 ineq1d ( ( 𝐾 ∈ HL ∧ ( 𝑋𝑆𝑌𝐴𝑍𝐴 ) ∧ 𝑍𝑋 ) → ( ( 𝑍 + 𝑌 ) ∩ 𝑋 ) = ( ( 𝑌 + 𝑍 ) ∩ 𝑋 ) )
23 14 19 22 3eqtr2d ( ( 𝐾 ∈ HL ∧ ( 𝑋𝑆𝑌𝐴𝑍𝐴 ) ∧ 𝑍𝑋 ) → ( ( 𝑋𝑌 ) + 𝑍 ) = ( ( 𝑌 + 𝑍 ) ∩ 𝑋 ) )
24 incom ( ( 𝑌 + 𝑍 ) ∩ 𝑋 ) = ( 𝑋 ∩ ( 𝑌 + 𝑍 ) )
25 23 24 eqtrdi ( ( 𝐾 ∈ HL ∧ ( 𝑋𝑆𝑌𝐴𝑍𝐴 ) ∧ 𝑍𝑋 ) → ( ( 𝑋𝑌 ) + 𝑍 ) = ( 𝑋 ∩ ( 𝑌 + 𝑍 ) ) )
26 25 3expia ( ( 𝐾 ∈ HL ∧ ( 𝑋𝑆𝑌𝐴𝑍𝐴 ) ) → ( 𝑍𝑋 → ( ( 𝑋𝑌 ) + 𝑍 ) = ( 𝑋 ∩ ( 𝑌 + 𝑍 ) ) ) )