Step |
Hyp |
Ref |
Expression |
1 |
|
pmod.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
pmod.s |
⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) |
3 |
|
pmod.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
4 |
|
incom |
⊢ ( 𝑋 ∩ 𝑌 ) = ( 𝑌 ∩ 𝑋 ) |
5 |
4
|
oveq1i |
⊢ ( ( 𝑋 ∩ 𝑌 ) + 𝑍 ) = ( ( 𝑌 ∩ 𝑋 ) + 𝑍 ) |
6 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
7 |
6
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑍 ⊆ 𝑋 ) → 𝐾 ∈ Lat ) |
8 |
|
simp22 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑍 ⊆ 𝑋 ) → 𝑌 ⊆ 𝐴 ) |
9 |
|
ssinss1 |
⊢ ( 𝑌 ⊆ 𝐴 → ( 𝑌 ∩ 𝑋 ) ⊆ 𝐴 ) |
10 |
8 9
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑍 ⊆ 𝑋 ) → ( 𝑌 ∩ 𝑋 ) ⊆ 𝐴 ) |
11 |
|
simp23 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑍 ⊆ 𝑋 ) → 𝑍 ⊆ 𝐴 ) |
12 |
1 3
|
paddcom |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑌 ∩ 𝑋 ) ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) → ( ( 𝑌 ∩ 𝑋 ) + 𝑍 ) = ( 𝑍 + ( 𝑌 ∩ 𝑋 ) ) ) |
13 |
7 10 11 12
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑍 ⊆ 𝑋 ) → ( ( 𝑌 ∩ 𝑋 ) + 𝑍 ) = ( 𝑍 + ( 𝑌 ∩ 𝑋 ) ) ) |
14 |
5 13
|
eqtrid |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑍 ⊆ 𝑋 ) → ( ( 𝑋 ∩ 𝑌 ) + 𝑍 ) = ( 𝑍 + ( 𝑌 ∩ 𝑋 ) ) ) |
15 |
|
simp21 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑍 ⊆ 𝑋 ) → 𝑋 ∈ 𝑆 ) |
16 |
11 8 15
|
3jca |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑍 ⊆ 𝑋 ) → ( 𝑍 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆 ) ) |
17 |
1 2 3
|
pmod1i |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆 ) ) → ( 𝑍 ⊆ 𝑋 → ( ( 𝑍 + 𝑌 ) ∩ 𝑋 ) = ( 𝑍 + ( 𝑌 ∩ 𝑋 ) ) ) ) |
18 |
17
|
3impia |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑍 ⊆ 𝑋 ) → ( ( 𝑍 + 𝑌 ) ∩ 𝑋 ) = ( 𝑍 + ( 𝑌 ∩ 𝑋 ) ) ) |
19 |
16 18
|
syld3an2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑍 ⊆ 𝑋 ) → ( ( 𝑍 + 𝑌 ) ∩ 𝑋 ) = ( 𝑍 + ( 𝑌 ∩ 𝑋 ) ) ) |
20 |
1 3
|
paddcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑍 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑍 + 𝑌 ) = ( 𝑌 + 𝑍 ) ) |
21 |
7 11 8 20
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑍 ⊆ 𝑋 ) → ( 𝑍 + 𝑌 ) = ( 𝑌 + 𝑍 ) ) |
22 |
21
|
ineq1d |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑍 ⊆ 𝑋 ) → ( ( 𝑍 + 𝑌 ) ∩ 𝑋 ) = ( ( 𝑌 + 𝑍 ) ∩ 𝑋 ) ) |
23 |
14 19 22
|
3eqtr2d |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑍 ⊆ 𝑋 ) → ( ( 𝑋 ∩ 𝑌 ) + 𝑍 ) = ( ( 𝑌 + 𝑍 ) ∩ 𝑋 ) ) |
24 |
|
incom |
⊢ ( ( 𝑌 + 𝑍 ) ∩ 𝑋 ) = ( 𝑋 ∩ ( 𝑌 + 𝑍 ) ) |
25 |
23 24
|
eqtrdi |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑍 ⊆ 𝑋 ) → ( ( 𝑋 ∩ 𝑌 ) + 𝑍 ) = ( 𝑋 ∩ ( 𝑌 + 𝑍 ) ) ) |
26 |
25
|
3expia |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑍 ⊆ 𝑋 → ( ( 𝑋 ∩ 𝑌 ) + 𝑍 ) = ( 𝑋 ∩ ( 𝑌 + 𝑍 ) ) ) ) |