| Step | Hyp | Ref | Expression | 
						
							| 1 |  | n0i | ⊢ ( 𝐹  ∈  ( 𝐴  ↑pm  𝐶 )  →  ¬  ( 𝐴  ↑pm  𝐶 )  =  ∅ ) | 
						
							| 2 |  | fnpm | ⊢  ↑pm   Fn  ( V  ×  V ) | 
						
							| 3 | 2 | fndmi | ⊢ dom   ↑pm   =  ( V  ×  V ) | 
						
							| 4 | 3 | ndmov | ⊢ ( ¬  ( 𝐴  ∈  V  ∧  𝐶  ∈  V )  →  ( 𝐴  ↑pm  𝐶 )  =  ∅ ) | 
						
							| 5 | 1 4 | nsyl2 | ⊢ ( 𝐹  ∈  ( 𝐴  ↑pm  𝐶 )  →  ( 𝐴  ∈  V  ∧  𝐶  ∈  V ) ) | 
						
							| 6 | 5 | simpld | ⊢ ( 𝐹  ∈  ( 𝐴  ↑pm  𝐶 )  →  𝐴  ∈  V ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝐹  ∈  ( 𝐴  ↑pm  𝐶 ) )  →  𝐴  ∈  V ) | 
						
							| 8 |  | simpl | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝐹  ∈  ( 𝐴  ↑pm  𝐶 ) )  →  𝐵  ∈  𝑉 ) | 
						
							| 9 |  | elpmi | ⊢ ( 𝐹  ∈  ( 𝐴  ↑pm  𝐶 )  →  ( 𝐹 : dom  𝐹 ⟶ 𝐴  ∧  dom  𝐹  ⊆  𝐶 ) ) | 
						
							| 10 | 9 | simpld | ⊢ ( 𝐹  ∈  ( 𝐴  ↑pm  𝐶 )  →  𝐹 : dom  𝐹 ⟶ 𝐴 ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝐹  ∈  ( 𝐴  ↑pm  𝐶 ) )  →  𝐹 : dom  𝐹 ⟶ 𝐴 ) | 
						
							| 12 |  | inss1 | ⊢ ( dom  𝐹  ∩  𝐵 )  ⊆  dom  𝐹 | 
						
							| 13 |  | fssres | ⊢ ( ( 𝐹 : dom  𝐹 ⟶ 𝐴  ∧  ( dom  𝐹  ∩  𝐵 )  ⊆  dom  𝐹 )  →  ( 𝐹  ↾  ( dom  𝐹  ∩  𝐵 ) ) : ( dom  𝐹  ∩  𝐵 ) ⟶ 𝐴 ) | 
						
							| 14 | 11 12 13 | sylancl | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝐹  ∈  ( 𝐴  ↑pm  𝐶 ) )  →  ( 𝐹  ↾  ( dom  𝐹  ∩  𝐵 ) ) : ( dom  𝐹  ∩  𝐵 ) ⟶ 𝐴 ) | 
						
							| 15 |  | ffun | ⊢ ( 𝐹 : dom  𝐹 ⟶ 𝐴  →  Fun  𝐹 ) | 
						
							| 16 |  | resres | ⊢ ( ( 𝐹  ↾  dom  𝐹 )  ↾  𝐵 )  =  ( 𝐹  ↾  ( dom  𝐹  ∩  𝐵 ) ) | 
						
							| 17 |  | funrel | ⊢ ( Fun  𝐹  →  Rel  𝐹 ) | 
						
							| 18 |  | resdm | ⊢ ( Rel  𝐹  →  ( 𝐹  ↾  dom  𝐹 )  =  𝐹 ) | 
						
							| 19 |  | reseq1 | ⊢ ( ( 𝐹  ↾  dom  𝐹 )  =  𝐹  →  ( ( 𝐹  ↾  dom  𝐹 )  ↾  𝐵 )  =  ( 𝐹  ↾  𝐵 ) ) | 
						
							| 20 | 17 18 19 | 3syl | ⊢ ( Fun  𝐹  →  ( ( 𝐹  ↾  dom  𝐹 )  ↾  𝐵 )  =  ( 𝐹  ↾  𝐵 ) ) | 
						
							| 21 | 16 20 | eqtr3id | ⊢ ( Fun  𝐹  →  ( 𝐹  ↾  ( dom  𝐹  ∩  𝐵 ) )  =  ( 𝐹  ↾  𝐵 ) ) | 
						
							| 22 | 11 15 21 | 3syl | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝐹  ∈  ( 𝐴  ↑pm  𝐶 ) )  →  ( 𝐹  ↾  ( dom  𝐹  ∩  𝐵 ) )  =  ( 𝐹  ↾  𝐵 ) ) | 
						
							| 23 | 22 | feq1d | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝐹  ∈  ( 𝐴  ↑pm  𝐶 ) )  →  ( ( 𝐹  ↾  ( dom  𝐹  ∩  𝐵 ) ) : ( dom  𝐹  ∩  𝐵 ) ⟶ 𝐴  ↔  ( 𝐹  ↾  𝐵 ) : ( dom  𝐹  ∩  𝐵 ) ⟶ 𝐴 ) ) | 
						
							| 24 | 14 23 | mpbid | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝐹  ∈  ( 𝐴  ↑pm  𝐶 ) )  →  ( 𝐹  ↾  𝐵 ) : ( dom  𝐹  ∩  𝐵 ) ⟶ 𝐴 ) | 
						
							| 25 |  | inss2 | ⊢ ( dom  𝐹  ∩  𝐵 )  ⊆  𝐵 | 
						
							| 26 |  | elpm2r | ⊢ ( ( ( 𝐴  ∈  V  ∧  𝐵  ∈  𝑉 )  ∧  ( ( 𝐹  ↾  𝐵 ) : ( dom  𝐹  ∩  𝐵 ) ⟶ 𝐴  ∧  ( dom  𝐹  ∩  𝐵 )  ⊆  𝐵 ) )  →  ( 𝐹  ↾  𝐵 )  ∈  ( 𝐴  ↑pm  𝐵 ) ) | 
						
							| 27 | 25 26 | mpanr2 | ⊢ ( ( ( 𝐴  ∈  V  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐹  ↾  𝐵 ) : ( dom  𝐹  ∩  𝐵 ) ⟶ 𝐴 )  →  ( 𝐹  ↾  𝐵 )  ∈  ( 𝐴  ↑pm  𝐵 ) ) | 
						
							| 28 | 7 8 24 27 | syl21anc | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝐹  ∈  ( 𝐴  ↑pm  𝐶 ) )  →  ( 𝐹  ↾  𝐵 )  ∈  ( 𝐴  ↑pm  𝐵 ) ) |