Step |
Hyp |
Ref |
Expression |
1 |
|
n0i |
⊢ ( 𝐹 ∈ ( 𝐴 ↑pm 𝐶 ) → ¬ ( 𝐴 ↑pm 𝐶 ) = ∅ ) |
2 |
|
fnpm |
⊢ ↑pm Fn ( V × V ) |
3 |
2
|
fndmi |
⊢ dom ↑pm = ( V × V ) |
4 |
3
|
ndmov |
⊢ ( ¬ ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐴 ↑pm 𝐶 ) = ∅ ) |
5 |
1 4
|
nsyl2 |
⊢ ( 𝐹 ∈ ( 𝐴 ↑pm 𝐶 ) → ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) ) |
6 |
5
|
simpld |
⊢ ( 𝐹 ∈ ( 𝐴 ↑pm 𝐶 ) → 𝐴 ∈ V ) |
7 |
6
|
adantl |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 ∈ ( 𝐴 ↑pm 𝐶 ) ) → 𝐴 ∈ V ) |
8 |
|
simpl |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 ∈ ( 𝐴 ↑pm 𝐶 ) ) → 𝐵 ∈ 𝑉 ) |
9 |
|
elpmi |
⊢ ( 𝐹 ∈ ( 𝐴 ↑pm 𝐶 ) → ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ dom 𝐹 ⊆ 𝐶 ) ) |
10 |
9
|
simpld |
⊢ ( 𝐹 ∈ ( 𝐴 ↑pm 𝐶 ) → 𝐹 : dom 𝐹 ⟶ 𝐴 ) |
11 |
10
|
adantl |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 ∈ ( 𝐴 ↑pm 𝐶 ) ) → 𝐹 : dom 𝐹 ⟶ 𝐴 ) |
12 |
|
inss1 |
⊢ ( dom 𝐹 ∩ 𝐵 ) ⊆ dom 𝐹 |
13 |
|
fssres |
⊢ ( ( 𝐹 : dom 𝐹 ⟶ 𝐴 ∧ ( dom 𝐹 ∩ 𝐵 ) ⊆ dom 𝐹 ) → ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐵 ) ) : ( dom 𝐹 ∩ 𝐵 ) ⟶ 𝐴 ) |
14 |
11 12 13
|
sylancl |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 ∈ ( 𝐴 ↑pm 𝐶 ) ) → ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐵 ) ) : ( dom 𝐹 ∩ 𝐵 ) ⟶ 𝐴 ) |
15 |
|
ffun |
⊢ ( 𝐹 : dom 𝐹 ⟶ 𝐴 → Fun 𝐹 ) |
16 |
|
resres |
⊢ ( ( 𝐹 ↾ dom 𝐹 ) ↾ 𝐵 ) = ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐵 ) ) |
17 |
|
funrel |
⊢ ( Fun 𝐹 → Rel 𝐹 ) |
18 |
|
resdm |
⊢ ( Rel 𝐹 → ( 𝐹 ↾ dom 𝐹 ) = 𝐹 ) |
19 |
|
reseq1 |
⊢ ( ( 𝐹 ↾ dom 𝐹 ) = 𝐹 → ( ( 𝐹 ↾ dom 𝐹 ) ↾ 𝐵 ) = ( 𝐹 ↾ 𝐵 ) ) |
20 |
17 18 19
|
3syl |
⊢ ( Fun 𝐹 → ( ( 𝐹 ↾ dom 𝐹 ) ↾ 𝐵 ) = ( 𝐹 ↾ 𝐵 ) ) |
21 |
16 20
|
eqtr3id |
⊢ ( Fun 𝐹 → ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐵 ) ) = ( 𝐹 ↾ 𝐵 ) ) |
22 |
11 15 21
|
3syl |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 ∈ ( 𝐴 ↑pm 𝐶 ) ) → ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐵 ) ) = ( 𝐹 ↾ 𝐵 ) ) |
23 |
22
|
feq1d |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 ∈ ( 𝐴 ↑pm 𝐶 ) ) → ( ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐵 ) ) : ( dom 𝐹 ∩ 𝐵 ) ⟶ 𝐴 ↔ ( 𝐹 ↾ 𝐵 ) : ( dom 𝐹 ∩ 𝐵 ) ⟶ 𝐴 ) ) |
24 |
14 23
|
mpbid |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 ∈ ( 𝐴 ↑pm 𝐶 ) ) → ( 𝐹 ↾ 𝐵 ) : ( dom 𝐹 ∩ 𝐵 ) ⟶ 𝐴 ) |
25 |
|
inss2 |
⊢ ( dom 𝐹 ∩ 𝐵 ) ⊆ 𝐵 |
26 |
|
elpm2r |
⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) ∧ ( ( 𝐹 ↾ 𝐵 ) : ( dom 𝐹 ∩ 𝐵 ) ⟶ 𝐴 ∧ ( dom 𝐹 ∩ 𝐵 ) ⊆ 𝐵 ) ) → ( 𝐹 ↾ 𝐵 ) ∈ ( 𝐴 ↑pm 𝐵 ) ) |
27 |
25 26
|
mpanr2 |
⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ↾ 𝐵 ) : ( dom 𝐹 ∩ 𝐵 ) ⟶ 𝐴 ) → ( 𝐹 ↾ 𝐵 ) ∈ ( 𝐴 ↑pm 𝐵 ) ) |
28 |
7 8 24 27
|
syl21anc |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐹 ∈ ( 𝐴 ↑pm 𝐶 ) ) → ( 𝐹 ↾ 𝐵 ) ∈ ( 𝐴 ↑pm 𝐵 ) ) |