Step |
Hyp |
Ref |
Expression |
1 |
|
xpss12 |
⊢ ( ( 𝐵 ⊆ 𝐷 ∧ 𝐴 ⊆ 𝐶 ) → ( 𝐵 × 𝐴 ) ⊆ ( 𝐷 × 𝐶 ) ) |
2 |
1
|
ancoms |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷 ) → ( 𝐵 × 𝐴 ) ⊆ ( 𝐷 × 𝐶 ) ) |
3 |
|
sstr |
⊢ ( ( 𝑓 ⊆ ( 𝐵 × 𝐴 ) ∧ ( 𝐵 × 𝐴 ) ⊆ ( 𝐷 × 𝐶 ) ) → 𝑓 ⊆ ( 𝐷 × 𝐶 ) ) |
4 |
3
|
expcom |
⊢ ( ( 𝐵 × 𝐴 ) ⊆ ( 𝐷 × 𝐶 ) → ( 𝑓 ⊆ ( 𝐵 × 𝐴 ) → 𝑓 ⊆ ( 𝐷 × 𝐶 ) ) ) |
5 |
2 4
|
syl |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷 ) → ( 𝑓 ⊆ ( 𝐵 × 𝐴 ) → 𝑓 ⊆ ( 𝐷 × 𝐶 ) ) ) |
6 |
5
|
anim2d |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷 ) → ( ( Fun 𝑓 ∧ 𝑓 ⊆ ( 𝐵 × 𝐴 ) ) → ( Fun 𝑓 ∧ 𝑓 ⊆ ( 𝐷 × 𝐶 ) ) ) ) |
7 |
6
|
adantr |
⊢ ( ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) ) → ( ( Fun 𝑓 ∧ 𝑓 ⊆ ( 𝐵 × 𝐴 ) ) → ( Fun 𝑓 ∧ 𝑓 ⊆ ( 𝐷 × 𝐶 ) ) ) ) |
8 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ 𝑉 ) → 𝐴 ∈ V ) |
9 |
|
ssexg |
⊢ ( ( 𝐵 ⊆ 𝐷 ∧ 𝐷 ∈ 𝑊 ) → 𝐵 ∈ V ) |
10 |
|
elpmg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝑓 ∈ ( 𝐴 ↑pm 𝐵 ) ↔ ( Fun 𝑓 ∧ 𝑓 ⊆ ( 𝐵 × 𝐴 ) ) ) ) |
11 |
8 9 10
|
syl2an |
⊢ ( ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐵 ⊆ 𝐷 ∧ 𝐷 ∈ 𝑊 ) ) → ( 𝑓 ∈ ( 𝐴 ↑pm 𝐵 ) ↔ ( Fun 𝑓 ∧ 𝑓 ⊆ ( 𝐵 × 𝐴 ) ) ) ) |
12 |
11
|
an4s |
⊢ ( ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) ) → ( 𝑓 ∈ ( 𝐴 ↑pm 𝐵 ) ↔ ( Fun 𝑓 ∧ 𝑓 ⊆ ( 𝐵 × 𝐴 ) ) ) ) |
13 |
|
elpmg |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) → ( 𝑓 ∈ ( 𝐶 ↑pm 𝐷 ) ↔ ( Fun 𝑓 ∧ 𝑓 ⊆ ( 𝐷 × 𝐶 ) ) ) ) |
14 |
13
|
adantl |
⊢ ( ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) ) → ( 𝑓 ∈ ( 𝐶 ↑pm 𝐷 ) ↔ ( Fun 𝑓 ∧ 𝑓 ⊆ ( 𝐷 × 𝐶 ) ) ) ) |
15 |
7 12 14
|
3imtr4d |
⊢ ( ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) ) → ( 𝑓 ∈ ( 𝐴 ↑pm 𝐵 ) → 𝑓 ∈ ( 𝐶 ↑pm 𝐷 ) ) ) |
16 |
15
|
ssrdv |
⊢ ( ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) ) → ( 𝐴 ↑pm 𝐵 ) ⊆ ( 𝐶 ↑pm 𝐷 ) ) |