Step |
Hyp |
Ref |
Expression |
1 |
|
n0i |
⊢ ( 𝑓 ∈ ( 𝐴 ↑pm 𝐵 ) → ¬ ( 𝐴 ↑pm 𝐵 ) = ∅ ) |
2 |
|
fnpm |
⊢ ↑pm Fn ( V × V ) |
3 |
2
|
fndmi |
⊢ dom ↑pm = ( V × V ) |
4 |
3
|
ndmov |
⊢ ( ¬ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ↑pm 𝐵 ) = ∅ ) |
5 |
1 4
|
nsyl2 |
⊢ ( 𝑓 ∈ ( 𝐴 ↑pm 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
6 |
|
elpmg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝑓 ∈ ( 𝐴 ↑pm 𝐵 ) ↔ ( Fun 𝑓 ∧ 𝑓 ⊆ ( 𝐵 × 𝐴 ) ) ) ) |
7 |
5 6
|
syl |
⊢ ( 𝑓 ∈ ( 𝐴 ↑pm 𝐵 ) → ( 𝑓 ∈ ( 𝐴 ↑pm 𝐵 ) ↔ ( Fun 𝑓 ∧ 𝑓 ⊆ ( 𝐵 × 𝐴 ) ) ) ) |
8 |
7
|
ibi |
⊢ ( 𝑓 ∈ ( 𝐴 ↑pm 𝐵 ) → ( Fun 𝑓 ∧ 𝑓 ⊆ ( 𝐵 × 𝐴 ) ) ) |
9 |
8
|
simprd |
⊢ ( 𝑓 ∈ ( 𝐴 ↑pm 𝐵 ) → 𝑓 ⊆ ( 𝐵 × 𝐴 ) ) |
10 |
|
velpw |
⊢ ( 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ↔ 𝑓 ⊆ ( 𝐵 × 𝐴 ) ) |
11 |
9 10
|
sylibr |
⊢ ( 𝑓 ∈ ( 𝐴 ↑pm 𝐵 ) → 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ) |
12 |
11
|
ssriv |
⊢ ( 𝐴 ↑pm 𝐵 ) ⊆ 𝒫 ( 𝐵 × 𝐴 ) |