Metamath Proof Explorer


Theorem pmtr3ncomlem2

Description: Lemma 2 for pmtr3ncom . (Contributed by AV, 17-Mar-2018)

Ref Expression
Hypotheses pmtr3ncom.t 𝑇 = ( pmTrsp ‘ 𝐷 )
pmtr3ncom.f 𝐹 = ( 𝑇 ‘ { 𝑋 , 𝑌 } )
pmtr3ncom.g 𝐺 = ( 𝑇 ‘ { 𝑌 , 𝑍 } )
Assertion pmtr3ncomlem2 ( ( 𝐷𝑉 ∧ ( 𝑋𝐷𝑌𝐷𝑍𝐷 ) ∧ ( 𝑋𝑌𝑋𝑍𝑌𝑍 ) ) → ( 𝐺𝐹 ) ≠ ( 𝐹𝐺 ) )

Proof

Step Hyp Ref Expression
1 pmtr3ncom.t 𝑇 = ( pmTrsp ‘ 𝐷 )
2 pmtr3ncom.f 𝐹 = ( 𝑇 ‘ { 𝑋 , 𝑌 } )
3 pmtr3ncom.g 𝐺 = ( 𝑇 ‘ { 𝑌 , 𝑍 } )
4 1 2 3 pmtr3ncomlem1 ( ( 𝐷𝑉 ∧ ( 𝑋𝐷𝑌𝐷𝑍𝐷 ) ∧ ( 𝑋𝑌𝑋𝑍𝑌𝑍 ) ) → ( ( 𝐺𝐹 ) ‘ 𝑋 ) ≠ ( ( 𝐹𝐺 ) ‘ 𝑋 ) )
5 fveq1 ( ( 𝐺𝐹 ) = ( 𝐹𝐺 ) → ( ( 𝐺𝐹 ) ‘ 𝑋 ) = ( ( 𝐹𝐺 ) ‘ 𝑋 ) )
6 5 necon3i ( ( ( 𝐺𝐹 ) ‘ 𝑋 ) ≠ ( ( 𝐹𝐺 ) ‘ 𝑋 ) → ( 𝐺𝐹 ) ≠ ( 𝐹𝐺 ) )
7 4 6 syl ( ( 𝐷𝑉 ∧ ( 𝑋𝐷𝑌𝐷𝑍𝐷 ) ∧ ( 𝑋𝑌𝑋𝑍𝑌𝑍 ) ) → ( 𝐺𝐹 ) ≠ ( 𝐹𝐺 ) )