Step |
Hyp |
Ref |
Expression |
1 |
|
pmtr3ncom.t |
⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) |
2 |
|
pmtr3ncom.f |
⊢ 𝐹 = ( 𝑇 ‘ { 𝑋 , 𝑌 } ) |
3 |
|
pmtr3ncom.g |
⊢ 𝐺 = ( 𝑇 ‘ { 𝑌 , 𝑍 } ) |
4 |
1 2 3
|
pmtr3ncomlem1 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑋 ) ≠ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) ) |
5 |
|
fveq1 |
⊢ ( ( 𝐺 ∘ 𝐹 ) = ( 𝐹 ∘ 𝐺 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑋 ) = ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) ) |
6 |
5
|
necon3i |
⊢ ( ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑋 ) ≠ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) → ( 𝐺 ∘ 𝐹 ) ≠ ( 𝐹 ∘ 𝐺 ) ) |
7 |
4 6
|
syl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → ( 𝐺 ∘ 𝐹 ) ≠ ( 𝐹 ∘ 𝐺 ) ) |