| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtr3ncom.t | ⊢ 𝑇  =  ( pmTrsp ‘ 𝐷 ) | 
						
							| 2 |  | pmtr3ncom.f | ⊢ 𝐹  =  ( 𝑇 ‘ { 𝑋 ,  𝑌 } ) | 
						
							| 3 |  | pmtr3ncom.g | ⊢ 𝐺  =  ( 𝑇 ‘ { 𝑌 ,  𝑍 } ) | 
						
							| 4 | 1 2 3 | pmtr3ncomlem1 | ⊢ ( ( 𝐷  ∈  𝑉  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑍  ∈  𝐷 )  ∧  ( 𝑋  ≠  𝑌  ∧  𝑋  ≠  𝑍  ∧  𝑌  ≠  𝑍 ) )  →  ( ( 𝐺  ∘  𝐹 ) ‘ 𝑋 )  ≠  ( ( 𝐹  ∘  𝐺 ) ‘ 𝑋 ) ) | 
						
							| 5 |  | fveq1 | ⊢ ( ( 𝐺  ∘  𝐹 )  =  ( 𝐹  ∘  𝐺 )  →  ( ( 𝐺  ∘  𝐹 ) ‘ 𝑋 )  =  ( ( 𝐹  ∘  𝐺 ) ‘ 𝑋 ) ) | 
						
							| 6 | 5 | necon3i | ⊢ ( ( ( 𝐺  ∘  𝐹 ) ‘ 𝑋 )  ≠  ( ( 𝐹  ∘  𝐺 ) ‘ 𝑋 )  →  ( 𝐺  ∘  𝐹 )  ≠  ( 𝐹  ∘  𝐺 ) ) | 
						
							| 7 | 4 6 | syl | ⊢ ( ( 𝐷  ∈  𝑉  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑍  ∈  𝐷 )  ∧  ( 𝑋  ≠  𝑌  ∧  𝑋  ≠  𝑍  ∧  𝑌  ≠  𝑍 ) )  →  ( 𝐺  ∘  𝐹 )  ≠  ( 𝐹  ∘  𝐺 ) ) |