| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmtrcnel.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
| 2 |
|
pmtrcnel.t |
⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) |
| 3 |
|
pmtrcnel.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 4 |
|
pmtrcnel.j |
⊢ 𝐽 = ( 𝐹 ‘ 𝐼 ) |
| 5 |
|
pmtrcnel.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 6 |
|
pmtrcnel.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
| 7 |
|
pmtrcnel.i |
⊢ ( 𝜑 → 𝐼 ∈ dom ( 𝐹 ∖ I ) ) |
| 8 |
|
mvdco |
⊢ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ⊆ ( dom ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) ∪ dom ( 𝐹 ∖ I ) ) |
| 9 |
|
difss |
⊢ ( 𝐹 ∖ I ) ⊆ 𝐹 |
| 10 |
|
dmss |
⊢ ( ( 𝐹 ∖ I ) ⊆ 𝐹 → dom ( 𝐹 ∖ I ) ⊆ dom 𝐹 ) |
| 11 |
9 10
|
ax-mp |
⊢ dom ( 𝐹 ∖ I ) ⊆ dom 𝐹 |
| 12 |
11 7
|
sselid |
⊢ ( 𝜑 → 𝐼 ∈ dom 𝐹 ) |
| 13 |
1 3
|
symgbasf1o |
⊢ ( 𝐹 ∈ 𝐵 → 𝐹 : 𝐷 –1-1-onto→ 𝐷 ) |
| 14 |
|
f1of |
⊢ ( 𝐹 : 𝐷 –1-1-onto→ 𝐷 → 𝐹 : 𝐷 ⟶ 𝐷 ) |
| 15 |
6 13 14
|
3syl |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ 𝐷 ) |
| 16 |
15
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐷 ) |
| 17 |
12 16
|
eleqtrd |
⊢ ( 𝜑 → 𝐼 ∈ 𝐷 ) |
| 18 |
15 17
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐼 ) ∈ 𝐷 ) |
| 19 |
4 18
|
eqeltrid |
⊢ ( 𝜑 → 𝐽 ∈ 𝐷 ) |
| 20 |
17 19
|
prssd |
⊢ ( 𝜑 → { 𝐼 , 𝐽 } ⊆ 𝐷 ) |
| 21 |
15
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐷 ) |
| 22 |
|
fnelnfp |
⊢ ( ( 𝐹 Fn 𝐷 ∧ 𝐼 ∈ 𝐷 ) → ( 𝐼 ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹 ‘ 𝐼 ) ≠ 𝐼 ) ) |
| 23 |
22
|
biimpa |
⊢ ( ( ( 𝐹 Fn 𝐷 ∧ 𝐼 ∈ 𝐷 ) ∧ 𝐼 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹 ‘ 𝐼 ) ≠ 𝐼 ) |
| 24 |
21 17 7 23
|
syl21anc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐼 ) ≠ 𝐼 ) |
| 25 |
24
|
necomd |
⊢ ( 𝜑 → 𝐼 ≠ ( 𝐹 ‘ 𝐼 ) ) |
| 26 |
4
|
a1i |
⊢ ( 𝜑 → 𝐽 = ( 𝐹 ‘ 𝐼 ) ) |
| 27 |
25 26
|
neeqtrrd |
⊢ ( 𝜑 → 𝐼 ≠ 𝐽 ) |
| 28 |
|
enpr2 |
⊢ ( ( 𝐼 ∈ 𝐷 ∧ 𝐽 ∈ 𝐷 ∧ 𝐼 ≠ 𝐽 ) → { 𝐼 , 𝐽 } ≈ 2o ) |
| 29 |
17 19 27 28
|
syl3anc |
⊢ ( 𝜑 → { 𝐼 , 𝐽 } ≈ 2o ) |
| 30 |
2
|
pmtrmvd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ { 𝐼 , 𝐽 } ⊆ 𝐷 ∧ { 𝐼 , 𝐽 } ≈ 2o ) → dom ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) = { 𝐼 , 𝐽 } ) |
| 31 |
5 20 29 30
|
syl3anc |
⊢ ( 𝜑 → dom ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) = { 𝐼 , 𝐽 } ) |
| 32 |
6 13
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐷 –1-1-onto→ 𝐷 ) |
| 33 |
|
f1omvdmvd |
⊢ ( ( 𝐹 : 𝐷 –1-1-onto→ 𝐷 ∧ 𝐼 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹 ‘ 𝐼 ) ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 } ) ) |
| 34 |
32 7 33
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐼 ) ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 } ) ) |
| 35 |
4 34
|
eqeltrid |
⊢ ( 𝜑 → 𝐽 ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 } ) ) |
| 36 |
35
|
eldifad |
⊢ ( 𝜑 → 𝐽 ∈ dom ( 𝐹 ∖ I ) ) |
| 37 |
7 36
|
prssd |
⊢ ( 𝜑 → { 𝐼 , 𝐽 } ⊆ dom ( 𝐹 ∖ I ) ) |
| 38 |
31 37
|
eqsstrd |
⊢ ( 𝜑 → dom ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) ⊆ dom ( 𝐹 ∖ I ) ) |
| 39 |
|
ssequn1 |
⊢ ( dom ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) ⊆ dom ( 𝐹 ∖ I ) ↔ ( dom ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) ∪ dom ( 𝐹 ∖ I ) ) = dom ( 𝐹 ∖ I ) ) |
| 40 |
38 39
|
sylib |
⊢ ( 𝜑 → ( dom ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) ∪ dom ( 𝐹 ∖ I ) ) = dom ( 𝐹 ∖ I ) ) |
| 41 |
8 40
|
sseqtrid |
⊢ ( 𝜑 → dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ⊆ dom ( 𝐹 ∖ I ) ) |
| 42 |
41
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ) → 𝑥 ∈ dom ( 𝐹 ∖ I ) ) |
| 43 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐼 ) → 𝑥 = 𝐼 ) |
| 44 |
|
eqid |
⊢ ran 𝑇 = ran 𝑇 |
| 45 |
2 44
|
pmtrrn |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ { 𝐼 , 𝐽 } ⊆ 𝐷 ∧ { 𝐼 , 𝐽 } ≈ 2o ) → ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∈ ran 𝑇 ) |
| 46 |
5 20 29 45
|
syl3anc |
⊢ ( 𝜑 → ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∈ ran 𝑇 ) |
| 47 |
2 44
|
pmtrff1o |
⊢ ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∈ ran 𝑇 → ( 𝑇 ‘ { 𝐼 , 𝐽 } ) : 𝐷 –1-1-onto→ 𝐷 ) |
| 48 |
46 47
|
syl |
⊢ ( 𝜑 → ( 𝑇 ‘ { 𝐼 , 𝐽 } ) : 𝐷 –1-1-onto→ 𝐷 ) |
| 49 |
|
f1oco |
⊢ ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) : 𝐷 –1-1-onto→ 𝐷 ∧ 𝐹 : 𝐷 –1-1-onto→ 𝐷 ) → ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) : 𝐷 –1-1-onto→ 𝐷 ) |
| 50 |
48 32 49
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) : 𝐷 –1-1-onto→ 𝐷 ) |
| 51 |
|
f1ofn |
⊢ ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) : 𝐷 –1-1-onto→ 𝐷 → ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) Fn 𝐷 ) |
| 52 |
50 51
|
syl |
⊢ ( 𝜑 → ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) Fn 𝐷 ) |
| 53 |
15 17
|
fvco3d |
⊢ ( 𝜑 → ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ‘ 𝐼 ) = ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ‘ ( 𝐹 ‘ 𝐼 ) ) ) |
| 54 |
26
|
eqcomd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐼 ) = 𝐽 ) |
| 55 |
54
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ‘ ( 𝐹 ‘ 𝐼 ) ) = ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ‘ 𝐽 ) ) |
| 56 |
2
|
pmtrprfv2 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝐼 ∈ 𝐷 ∧ 𝐽 ∈ 𝐷 ∧ 𝐼 ≠ 𝐽 ) ) → ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ‘ 𝐽 ) = 𝐼 ) |
| 57 |
5 17 19 27 56
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ‘ 𝐽 ) = 𝐼 ) |
| 58 |
53 55 57
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ‘ 𝐼 ) = 𝐼 ) |
| 59 |
|
nne |
⊢ ( ¬ ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ‘ 𝐼 ) ≠ 𝐼 ↔ ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ‘ 𝐼 ) = 𝐼 ) |
| 60 |
58 59
|
sylibr |
⊢ ( 𝜑 → ¬ ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ‘ 𝐼 ) ≠ 𝐼 ) |
| 61 |
|
fnelnfp |
⊢ ( ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) Fn 𝐷 ∧ 𝐼 ∈ 𝐷 ) → ( 𝐼 ∈ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ↔ ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ‘ 𝐼 ) ≠ 𝐼 ) ) |
| 62 |
61
|
notbid |
⊢ ( ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) Fn 𝐷 ∧ 𝐼 ∈ 𝐷 ) → ( ¬ 𝐼 ∈ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ↔ ¬ ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ‘ 𝐼 ) ≠ 𝐼 ) ) |
| 63 |
62
|
biimpar |
⊢ ( ( ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) Fn 𝐷 ∧ 𝐼 ∈ 𝐷 ) ∧ ¬ ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ‘ 𝐼 ) ≠ 𝐼 ) → ¬ 𝐼 ∈ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ) |
| 64 |
52 17 60 63
|
syl21anc |
⊢ ( 𝜑 → ¬ 𝐼 ∈ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ) |
| 65 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐼 ) → ¬ 𝐼 ∈ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ) |
| 66 |
43 65
|
eqneltrd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐼 ) → ¬ 𝑥 ∈ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ) |
| 67 |
66
|
ex |
⊢ ( 𝜑 → ( 𝑥 = 𝐼 → ¬ 𝑥 ∈ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ) ) |
| 68 |
67
|
necon2ad |
⊢ ( 𝜑 → ( 𝑥 ∈ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) → 𝑥 ≠ 𝐼 ) ) |
| 69 |
68
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ) → 𝑥 ≠ 𝐼 ) |
| 70 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 } ) ↔ ( 𝑥 ∈ dom ( 𝐹 ∖ I ) ∧ 𝑥 ≠ 𝐼 ) ) |
| 71 |
42 69 70
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ) → 𝑥 ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 } ) ) |
| 72 |
71
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) → 𝑥 ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 } ) ) ) |
| 73 |
72
|
ssrdv |
⊢ ( 𝜑 → dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ⊆ ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 } ) ) |