Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrcnel.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
2 |
|
pmtrcnel.t |
⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) |
3 |
|
pmtrcnel.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
4 |
|
pmtrcnel.j |
⊢ 𝐽 = ( 𝐹 ‘ 𝐼 ) |
5 |
|
pmtrcnel.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
6 |
|
pmtrcnel.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
7 |
|
pmtrcnel.i |
⊢ ( 𝜑 → 𝐼 ∈ dom ( 𝐹 ∖ I ) ) |
8 |
|
mvdco |
⊢ dom ( ( ◡ ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ) ∖ I ) ⊆ ( dom ( ◡ ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) ∪ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ) |
9 |
8
|
a1i |
⊢ ( 𝜑 → dom ( ( ◡ ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ) ∖ I ) ⊆ ( dom ( ◡ ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) ∪ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ) ) |
10 |
|
coass |
⊢ ( ( ◡ ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ) ∘ 𝐹 ) = ( ◡ ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ) |
11 |
|
difss |
⊢ ( 𝐹 ∖ I ) ⊆ 𝐹 |
12 |
|
dmss |
⊢ ( ( 𝐹 ∖ I ) ⊆ 𝐹 → dom ( 𝐹 ∖ I ) ⊆ dom 𝐹 ) |
13 |
11 12
|
ax-mp |
⊢ dom ( 𝐹 ∖ I ) ⊆ dom 𝐹 |
14 |
13 7
|
sselid |
⊢ ( 𝜑 → 𝐼 ∈ dom 𝐹 ) |
15 |
1 3
|
symgbasf1o |
⊢ ( 𝐹 ∈ 𝐵 → 𝐹 : 𝐷 –1-1-onto→ 𝐷 ) |
16 |
|
f1of |
⊢ ( 𝐹 : 𝐷 –1-1-onto→ 𝐷 → 𝐹 : 𝐷 ⟶ 𝐷 ) |
17 |
6 15 16
|
3syl |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ 𝐷 ) |
18 |
17
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐷 ) |
19 |
14 18
|
eleqtrd |
⊢ ( 𝜑 → 𝐼 ∈ 𝐷 ) |
20 |
17 19
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐼 ) ∈ 𝐷 ) |
21 |
4 20
|
eqeltrid |
⊢ ( 𝜑 → 𝐽 ∈ 𝐷 ) |
22 |
19 21
|
prssd |
⊢ ( 𝜑 → { 𝐼 , 𝐽 } ⊆ 𝐷 ) |
23 |
17
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐷 ) |
24 |
|
fnelnfp |
⊢ ( ( 𝐹 Fn 𝐷 ∧ 𝐼 ∈ 𝐷 ) → ( 𝐼 ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹 ‘ 𝐼 ) ≠ 𝐼 ) ) |
25 |
24
|
biimpa |
⊢ ( ( ( 𝐹 Fn 𝐷 ∧ 𝐼 ∈ 𝐷 ) ∧ 𝐼 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹 ‘ 𝐼 ) ≠ 𝐼 ) |
26 |
23 19 7 25
|
syl21anc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐼 ) ≠ 𝐼 ) |
27 |
26
|
necomd |
⊢ ( 𝜑 → 𝐼 ≠ ( 𝐹 ‘ 𝐼 ) ) |
28 |
4
|
a1i |
⊢ ( 𝜑 → 𝐽 = ( 𝐹 ‘ 𝐼 ) ) |
29 |
27 28
|
neeqtrrd |
⊢ ( 𝜑 → 𝐼 ≠ 𝐽 ) |
30 |
|
pr2nelem |
⊢ ( ( 𝐼 ∈ 𝐷 ∧ 𝐽 ∈ 𝐷 ∧ 𝐼 ≠ 𝐽 ) → { 𝐼 , 𝐽 } ≈ 2o ) |
31 |
19 21 29 30
|
syl3anc |
⊢ ( 𝜑 → { 𝐼 , 𝐽 } ≈ 2o ) |
32 |
|
eqid |
⊢ ran 𝑇 = ran 𝑇 |
33 |
2 32
|
pmtrrn |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ { 𝐼 , 𝐽 } ⊆ 𝐷 ∧ { 𝐼 , 𝐽 } ≈ 2o ) → ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∈ ran 𝑇 ) |
34 |
5 22 31 33
|
syl3anc |
⊢ ( 𝜑 → ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∈ ran 𝑇 ) |
35 |
2 32
|
pmtrff1o |
⊢ ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∈ ran 𝑇 → ( 𝑇 ‘ { 𝐼 , 𝐽 } ) : 𝐷 –1-1-onto→ 𝐷 ) |
36 |
|
f1ococnv1 |
⊢ ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) : 𝐷 –1-1-onto→ 𝐷 → ( ◡ ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ) = ( I ↾ 𝐷 ) ) |
37 |
34 35 36
|
3syl |
⊢ ( 𝜑 → ( ◡ ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ) = ( I ↾ 𝐷 ) ) |
38 |
37
|
coeq1d |
⊢ ( 𝜑 → ( ( ◡ ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ) ∘ 𝐹 ) = ( ( I ↾ 𝐷 ) ∘ 𝐹 ) ) |
39 |
10 38
|
eqtr3id |
⊢ ( 𝜑 → ( ◡ ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ) = ( ( I ↾ 𝐷 ) ∘ 𝐹 ) ) |
40 |
|
fcoi2 |
⊢ ( 𝐹 : 𝐷 ⟶ 𝐷 → ( ( I ↾ 𝐷 ) ∘ 𝐹 ) = 𝐹 ) |
41 |
17 40
|
syl |
⊢ ( 𝜑 → ( ( I ↾ 𝐷 ) ∘ 𝐹 ) = 𝐹 ) |
42 |
39 41
|
eqtrd |
⊢ ( 𝜑 → ( ◡ ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ) = 𝐹 ) |
43 |
42
|
difeq1d |
⊢ ( 𝜑 → ( ( ◡ ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ) ∖ I ) = ( 𝐹 ∖ I ) ) |
44 |
43
|
dmeqd |
⊢ ( 𝜑 → dom ( ( ◡ ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ) ∖ I ) = dom ( 𝐹 ∖ I ) ) |
45 |
2 32
|
pmtrfcnv |
⊢ ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∈ ran 𝑇 → ◡ ( 𝑇 ‘ { 𝐼 , 𝐽 } ) = ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ) |
46 |
34 45
|
syl |
⊢ ( 𝜑 → ◡ ( 𝑇 ‘ { 𝐼 , 𝐽 } ) = ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ) |
47 |
46
|
difeq1d |
⊢ ( 𝜑 → ( ◡ ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) = ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) ) |
48 |
47
|
dmeqd |
⊢ ( 𝜑 → dom ( ◡ ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) = dom ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) ) |
49 |
2
|
pmtrmvd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ { 𝐼 , 𝐽 } ⊆ 𝐷 ∧ { 𝐼 , 𝐽 } ≈ 2o ) → dom ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) = { 𝐼 , 𝐽 } ) |
50 |
5 22 31 49
|
syl3anc |
⊢ ( 𝜑 → dom ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) = { 𝐼 , 𝐽 } ) |
51 |
48 50
|
eqtrd |
⊢ ( 𝜑 → dom ( ◡ ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) = { 𝐼 , 𝐽 } ) |
52 |
51
|
uneq1d |
⊢ ( 𝜑 → ( dom ( ◡ ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) ∪ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ) = ( { 𝐼 , 𝐽 } ∪ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ) ) |
53 |
|
uncom |
⊢ ( { 𝐼 , 𝐽 } ∪ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ) = ( dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ∪ { 𝐼 , 𝐽 } ) |
54 |
52 53
|
eqtrdi |
⊢ ( 𝜑 → ( dom ( ◡ ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) ∪ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ) = ( dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ∪ { 𝐼 , 𝐽 } ) ) |
55 |
9 44 54
|
3sstr3d |
⊢ ( 𝜑 → dom ( 𝐹 ∖ I ) ⊆ ( dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ∪ { 𝐼 , 𝐽 } ) ) |
56 |
55
|
ssdifd |
⊢ ( 𝜑 → ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 , 𝐽 } ) ⊆ ( ( dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ∪ { 𝐼 , 𝐽 } ) ∖ { 𝐼 , 𝐽 } ) ) |
57 |
|
difun2 |
⊢ ( ( dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ∪ { 𝐼 , 𝐽 } ) ∖ { 𝐼 , 𝐽 } ) = ( dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ∖ { 𝐼 , 𝐽 } ) |
58 |
|
difss |
⊢ ( dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ∖ { 𝐼 , 𝐽 } ) ⊆ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) |
59 |
57 58
|
eqsstri |
⊢ ( ( dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ∪ { 𝐼 , 𝐽 } ) ∖ { 𝐼 , 𝐽 } ) ⊆ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) |
60 |
56 59
|
sstrdi |
⊢ ( 𝜑 → ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 , 𝐽 } ) ⊆ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ) |