Metamath Proof Explorer


Theorem pmtrcnel2

Description: Variation on pmtrcnel . (Contributed by Thierry Arnoux, 16-Nov-2023)

Ref Expression
Hypotheses pmtrcnel.s 𝑆 = ( SymGrp ‘ 𝐷 )
pmtrcnel.t 𝑇 = ( pmTrsp ‘ 𝐷 )
pmtrcnel.b 𝐵 = ( Base ‘ 𝑆 )
pmtrcnel.j 𝐽 = ( 𝐹𝐼 )
pmtrcnel.d ( 𝜑𝐷𝑉 )
pmtrcnel.f ( 𝜑𝐹𝐵 )
pmtrcnel.i ( 𝜑𝐼 ∈ dom ( 𝐹 ∖ I ) )
Assertion pmtrcnel2 ( 𝜑 → ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 , 𝐽 } ) ⊆ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) )

Proof

Step Hyp Ref Expression
1 pmtrcnel.s 𝑆 = ( SymGrp ‘ 𝐷 )
2 pmtrcnel.t 𝑇 = ( pmTrsp ‘ 𝐷 )
3 pmtrcnel.b 𝐵 = ( Base ‘ 𝑆 )
4 pmtrcnel.j 𝐽 = ( 𝐹𝐼 )
5 pmtrcnel.d ( 𝜑𝐷𝑉 )
6 pmtrcnel.f ( 𝜑𝐹𝐵 )
7 pmtrcnel.i ( 𝜑𝐼 ∈ dom ( 𝐹 ∖ I ) )
8 mvdco dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ) ∖ I ) ⊆ ( dom ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) ∪ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) )
9 8 a1i ( 𝜑 → dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ) ∖ I ) ⊆ ( dom ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) ∪ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ) )
10 coass ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ) ∘ 𝐹 ) = ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) )
11 difss ( 𝐹 ∖ I ) ⊆ 𝐹
12 dmss ( ( 𝐹 ∖ I ) ⊆ 𝐹 → dom ( 𝐹 ∖ I ) ⊆ dom 𝐹 )
13 11 12 ax-mp dom ( 𝐹 ∖ I ) ⊆ dom 𝐹
14 13 7 sselid ( 𝜑𝐼 ∈ dom 𝐹 )
15 1 3 symgbasf1o ( 𝐹𝐵𝐹 : 𝐷1-1-onto𝐷 )
16 f1of ( 𝐹 : 𝐷1-1-onto𝐷𝐹 : 𝐷𝐷 )
17 6 15 16 3syl ( 𝜑𝐹 : 𝐷𝐷 )
18 17 fdmd ( 𝜑 → dom 𝐹 = 𝐷 )
19 14 18 eleqtrd ( 𝜑𝐼𝐷 )
20 17 19 ffvelrnd ( 𝜑 → ( 𝐹𝐼 ) ∈ 𝐷 )
21 4 20 eqeltrid ( 𝜑𝐽𝐷 )
22 19 21 prssd ( 𝜑 → { 𝐼 , 𝐽 } ⊆ 𝐷 )
23 17 ffnd ( 𝜑𝐹 Fn 𝐷 )
24 fnelnfp ( ( 𝐹 Fn 𝐷𝐼𝐷 ) → ( 𝐼 ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹𝐼 ) ≠ 𝐼 ) )
25 24 biimpa ( ( ( 𝐹 Fn 𝐷𝐼𝐷 ) ∧ 𝐼 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹𝐼 ) ≠ 𝐼 )
26 23 19 7 25 syl21anc ( 𝜑 → ( 𝐹𝐼 ) ≠ 𝐼 )
27 26 necomd ( 𝜑𝐼 ≠ ( 𝐹𝐼 ) )
28 4 a1i ( 𝜑𝐽 = ( 𝐹𝐼 ) )
29 27 28 neeqtrrd ( 𝜑𝐼𝐽 )
30 pr2nelem ( ( 𝐼𝐷𝐽𝐷𝐼𝐽 ) → { 𝐼 , 𝐽 } ≈ 2o )
31 19 21 29 30 syl3anc ( 𝜑 → { 𝐼 , 𝐽 } ≈ 2o )
32 eqid ran 𝑇 = ran 𝑇
33 2 32 pmtrrn ( ( 𝐷𝑉 ∧ { 𝐼 , 𝐽 } ⊆ 𝐷 ∧ { 𝐼 , 𝐽 } ≈ 2o ) → ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∈ ran 𝑇 )
34 5 22 31 33 syl3anc ( 𝜑 → ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∈ ran 𝑇 )
35 2 32 pmtrff1o ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∈ ran 𝑇 → ( 𝑇 ‘ { 𝐼 , 𝐽 } ) : 𝐷1-1-onto𝐷 )
36 f1ococnv1 ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) : 𝐷1-1-onto𝐷 → ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ) = ( I ↾ 𝐷 ) )
37 34 35 36 3syl ( 𝜑 → ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ) = ( I ↾ 𝐷 ) )
38 37 coeq1d ( 𝜑 → ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ) ∘ 𝐹 ) = ( ( I ↾ 𝐷 ) ∘ 𝐹 ) )
39 10 38 eqtr3id ( 𝜑 → ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ) = ( ( I ↾ 𝐷 ) ∘ 𝐹 ) )
40 fcoi2 ( 𝐹 : 𝐷𝐷 → ( ( I ↾ 𝐷 ) ∘ 𝐹 ) = 𝐹 )
41 17 40 syl ( 𝜑 → ( ( I ↾ 𝐷 ) ∘ 𝐹 ) = 𝐹 )
42 39 41 eqtrd ( 𝜑 → ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ) = 𝐹 )
43 42 difeq1d ( 𝜑 → ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ) ∖ I ) = ( 𝐹 ∖ I ) )
44 43 dmeqd ( 𝜑 → dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ) ∖ I ) = dom ( 𝐹 ∖ I ) )
45 2 32 pmtrfcnv ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∈ ran 𝑇 ( 𝑇 ‘ { 𝐼 , 𝐽 } ) = ( 𝑇 ‘ { 𝐼 , 𝐽 } ) )
46 34 45 syl ( 𝜑 ( 𝑇 ‘ { 𝐼 , 𝐽 } ) = ( 𝑇 ‘ { 𝐼 , 𝐽 } ) )
47 46 difeq1d ( 𝜑 → ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) = ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) )
48 47 dmeqd ( 𝜑 → dom ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) = dom ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) )
49 2 pmtrmvd ( ( 𝐷𝑉 ∧ { 𝐼 , 𝐽 } ⊆ 𝐷 ∧ { 𝐼 , 𝐽 } ≈ 2o ) → dom ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) = { 𝐼 , 𝐽 } )
50 5 22 31 49 syl3anc ( 𝜑 → dom ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) = { 𝐼 , 𝐽 } )
51 48 50 eqtrd ( 𝜑 → dom ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) = { 𝐼 , 𝐽 } )
52 51 uneq1d ( 𝜑 → ( dom ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) ∪ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ) = ( { 𝐼 , 𝐽 } ∪ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ) )
53 uncom ( { 𝐼 , 𝐽 } ∪ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ) = ( dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ∪ { 𝐼 , 𝐽 } )
54 52 53 eqtrdi ( 𝜑 → ( dom ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∖ I ) ∪ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ) = ( dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ∪ { 𝐼 , 𝐽 } ) )
55 9 44 54 3sstr3d ( 𝜑 → dom ( 𝐹 ∖ I ) ⊆ ( dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ∪ { 𝐼 , 𝐽 } ) )
56 55 ssdifd ( 𝜑 → ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 , 𝐽 } ) ⊆ ( ( dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ∪ { 𝐼 , 𝐽 } ) ∖ { 𝐼 , 𝐽 } ) )
57 difun2 ( ( dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ∪ { 𝐼 , 𝐽 } ) ∖ { 𝐼 , 𝐽 } ) = ( dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ∖ { 𝐼 , 𝐽 } )
58 difss ( dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ∖ { 𝐼 , 𝐽 } ) ⊆ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I )
59 57 58 eqsstri ( ( dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ∪ { 𝐼 , 𝐽 } ) ∖ { 𝐼 , 𝐽 } ) ⊆ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I )
60 56 59 sstrdi ( 𝜑 → ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 , 𝐽 } ) ⊆ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) )