Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrcnel.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
2 |
|
pmtrcnel.t |
⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) |
3 |
|
pmtrcnel.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
4 |
|
pmtrcnel.j |
⊢ 𝐽 = ( 𝐹 ‘ 𝐼 ) |
5 |
|
pmtrcnel.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
6 |
|
pmtrcnel.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
7 |
|
pmtrcnel.i |
⊢ ( 𝜑 → 𝐼 ∈ dom ( 𝐹 ∖ I ) ) |
8 |
|
pmtrcnel.e |
⊢ 𝐸 = dom ( 𝐹 ∖ I ) |
9 |
|
pmtrcnel.a |
⊢ 𝐴 = dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) |
10 |
1 2 3 4 5 6 7
|
pmtrcnel |
⊢ ( 𝜑 → dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ⊆ ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 } ) ) |
11 |
8
|
difeq1i |
⊢ ( 𝐸 ∖ { 𝐼 } ) = ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 } ) |
12 |
10 9 11
|
3sstr4g |
⊢ ( 𝜑 → 𝐴 ⊆ ( 𝐸 ∖ { 𝐼 } ) ) |
13 |
12
|
ssdifd |
⊢ ( 𝜑 → ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) ⊆ ( ( 𝐸 ∖ { 𝐼 } ) ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) ) |
14 |
|
difpr |
⊢ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) = ( ( 𝐸 ∖ { 𝐼 } ) ∖ { 𝐽 } ) |
15 |
14
|
difeq2i |
⊢ ( ( 𝐸 ∖ { 𝐼 } ) ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = ( ( 𝐸 ∖ { 𝐼 } ) ∖ ( ( 𝐸 ∖ { 𝐼 } ) ∖ { 𝐽 } ) ) |
16 |
1 3
|
symgbasf1o |
⊢ ( 𝐹 ∈ 𝐵 → 𝐹 : 𝐷 –1-1-onto→ 𝐷 ) |
17 |
6 16
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐷 –1-1-onto→ 𝐷 ) |
18 |
|
f1omvdmvd |
⊢ ( ( 𝐹 : 𝐷 –1-1-onto→ 𝐷 ∧ 𝐼 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹 ‘ 𝐼 ) ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 } ) ) |
19 |
17 7 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐼 ) ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 } ) ) |
20 |
4 19
|
eqeltrid |
⊢ ( 𝜑 → 𝐽 ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 } ) ) |
21 |
20
|
eldifad |
⊢ ( 𝜑 → 𝐽 ∈ dom ( 𝐹 ∖ I ) ) |
22 |
21 8
|
eleqtrrdi |
⊢ ( 𝜑 → 𝐽 ∈ 𝐸 ) |
23 |
4
|
a1i |
⊢ ( 𝜑 → 𝐽 = ( 𝐹 ‘ 𝐼 ) ) |
24 |
|
f1of |
⊢ ( 𝐹 : 𝐷 –1-1-onto→ 𝐷 → 𝐹 : 𝐷 ⟶ 𝐷 ) |
25 |
17 24
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ 𝐷 ) |
26 |
25
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐷 ) |
27 |
|
difss |
⊢ ( 𝐹 ∖ I ) ⊆ 𝐹 |
28 |
|
dmss |
⊢ ( ( 𝐹 ∖ I ) ⊆ 𝐹 → dom ( 𝐹 ∖ I ) ⊆ dom 𝐹 ) |
29 |
27 28
|
ax-mp |
⊢ dom ( 𝐹 ∖ I ) ⊆ dom 𝐹 |
30 |
29 7
|
sselid |
⊢ ( 𝜑 → 𝐼 ∈ dom 𝐹 ) |
31 |
25
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐷 ) |
32 |
30 31
|
eleqtrd |
⊢ ( 𝜑 → 𝐼 ∈ 𝐷 ) |
33 |
|
fnelnfp |
⊢ ( ( 𝐹 Fn 𝐷 ∧ 𝐼 ∈ 𝐷 ) → ( 𝐼 ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹 ‘ 𝐼 ) ≠ 𝐼 ) ) |
34 |
33
|
biimpa |
⊢ ( ( ( 𝐹 Fn 𝐷 ∧ 𝐼 ∈ 𝐷 ) ∧ 𝐼 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹 ‘ 𝐼 ) ≠ 𝐼 ) |
35 |
26 32 7 34
|
syl21anc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐼 ) ≠ 𝐼 ) |
36 |
23 35
|
eqnetrd |
⊢ ( 𝜑 → 𝐽 ≠ 𝐼 ) |
37 |
|
eldifsn |
⊢ ( 𝐽 ∈ ( 𝐸 ∖ { 𝐼 } ) ↔ ( 𝐽 ∈ 𝐸 ∧ 𝐽 ≠ 𝐼 ) ) |
38 |
22 36 37
|
sylanbrc |
⊢ ( 𝜑 → 𝐽 ∈ ( 𝐸 ∖ { 𝐼 } ) ) |
39 |
38
|
snssd |
⊢ ( 𝜑 → { 𝐽 } ⊆ ( 𝐸 ∖ { 𝐼 } ) ) |
40 |
|
dfss4 |
⊢ ( { 𝐽 } ⊆ ( 𝐸 ∖ { 𝐼 } ) ↔ ( ( 𝐸 ∖ { 𝐼 } ) ∖ ( ( 𝐸 ∖ { 𝐼 } ) ∖ { 𝐽 } ) ) = { 𝐽 } ) |
41 |
39 40
|
sylib |
⊢ ( 𝜑 → ( ( 𝐸 ∖ { 𝐼 } ) ∖ ( ( 𝐸 ∖ { 𝐼 } ) ∖ { 𝐽 } ) ) = { 𝐽 } ) |
42 |
15 41
|
syl5eq |
⊢ ( 𝜑 → ( ( 𝐸 ∖ { 𝐼 } ) ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = { 𝐽 } ) |
43 |
13 42
|
sseqtrd |
⊢ ( 𝜑 → ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) ⊆ { 𝐽 } ) |
44 |
|
sssn |
⊢ ( ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) ⊆ { 𝐽 } ↔ ( ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = ∅ ∨ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = { 𝐽 } ) ) |
45 |
43 44
|
sylib |
⊢ ( 𝜑 → ( ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = ∅ ∨ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = { 𝐽 } ) ) |
46 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = ∅ ) → ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = ∅ ) |
47 |
1 2 3 4 5 6 7
|
pmtrcnel2 |
⊢ ( 𝜑 → ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 , 𝐽 } ) ⊆ dom ( ( ( 𝑇 ‘ { 𝐼 , 𝐽 } ) ∘ 𝐹 ) ∖ I ) ) |
48 |
8
|
difeq1i |
⊢ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) = ( dom ( 𝐹 ∖ I ) ∖ { 𝐼 , 𝐽 } ) |
49 |
47 48 9
|
3sstr4g |
⊢ ( 𝜑 → ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ⊆ 𝐴 ) |
50 |
|
ssdif0 |
⊢ ( ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ⊆ 𝐴 ↔ ( ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ∖ 𝐴 ) = ∅ ) |
51 |
49 50
|
sylib |
⊢ ( 𝜑 → ( ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ∖ 𝐴 ) = ∅ ) |
52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = ∅ ) → ( ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ∖ 𝐴 ) = ∅ ) |
53 |
|
eqdif |
⊢ ( ( ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = ∅ ∧ ( ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ∖ 𝐴 ) = ∅ ) → 𝐴 = ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) |
54 |
46 52 53
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = ∅ ) → 𝐴 = ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) |
55 |
54
|
ex |
⊢ ( 𝜑 → ( ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = ∅ → 𝐴 = ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) ) |
56 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = { 𝐽 } ) → 𝐴 ⊆ ( 𝐸 ∖ { 𝐼 } ) ) |
57 |
14 49
|
eqsstrrid |
⊢ ( 𝜑 → ( ( 𝐸 ∖ { 𝐼 } ) ∖ { 𝐽 } ) ⊆ 𝐴 ) |
58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = { 𝐽 } ) → ( ( 𝐸 ∖ { 𝐼 } ) ∖ { 𝐽 } ) ⊆ 𝐴 ) |
59 |
|
ssundif |
⊢ ( ( 𝐸 ∖ { 𝐼 } ) ⊆ ( { 𝐽 } ∪ 𝐴 ) ↔ ( ( 𝐸 ∖ { 𝐼 } ) ∖ { 𝐽 } ) ⊆ 𝐴 ) |
60 |
58 59
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = { 𝐽 } ) → ( 𝐸 ∖ { 𝐼 } ) ⊆ ( { 𝐽 } ∪ 𝐴 ) ) |
61 |
|
ssidd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = { 𝐽 } ) → { 𝐽 } ⊆ { 𝐽 } ) |
62 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = { 𝐽 } ) → ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = { 𝐽 } ) |
63 |
61 62
|
sseqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = { 𝐽 } ) → { 𝐽 } ⊆ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) ) |
64 |
63
|
difss2d |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = { 𝐽 } ) → { 𝐽 } ⊆ 𝐴 ) |
65 |
|
ssequn1 |
⊢ ( { 𝐽 } ⊆ 𝐴 ↔ ( { 𝐽 } ∪ 𝐴 ) = 𝐴 ) |
66 |
64 65
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = { 𝐽 } ) → ( { 𝐽 } ∪ 𝐴 ) = 𝐴 ) |
67 |
60 66
|
sseqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = { 𝐽 } ) → ( 𝐸 ∖ { 𝐼 } ) ⊆ 𝐴 ) |
68 |
56 67
|
eqssd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = { 𝐽 } ) → 𝐴 = ( 𝐸 ∖ { 𝐼 } ) ) |
69 |
68
|
ex |
⊢ ( 𝜑 → ( ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = { 𝐽 } → 𝐴 = ( 𝐸 ∖ { 𝐼 } ) ) ) |
70 |
55 69
|
orim12d |
⊢ ( 𝜑 → ( ( ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = ∅ ∨ ( 𝐴 ∖ ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ) = { 𝐽 } ) → ( 𝐴 = ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ∨ 𝐴 = ( 𝐸 ∖ { 𝐼 } ) ) ) ) |
71 |
45 70
|
mpd |
⊢ ( 𝜑 → ( 𝐴 = ( 𝐸 ∖ { 𝐼 , 𝐽 } ) ∨ 𝐴 = ( 𝐸 ∖ { 𝐼 } ) ) ) |