Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrdifel.t |
⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) |
2 |
|
pmtrdifel.r |
⊢ 𝑅 = ran ( pmTrsp ‘ 𝑁 ) |
3 |
|
eqid |
⊢ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑡 ∖ I ) ) = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑡 ∖ I ) ) |
4 |
1 2 3
|
pmtrdifellem1 |
⊢ ( 𝑡 ∈ 𝑇 → ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑡 ∖ I ) ) ∈ 𝑅 ) |
5 |
1 2 3
|
pmtrdifellem3 |
⊢ ( 𝑡 ∈ 𝑇 → ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑡 ‘ 𝑥 ) = ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑡 ∖ I ) ) ‘ 𝑥 ) ) |
6 |
|
fveq1 |
⊢ ( 𝑟 = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑡 ∖ I ) ) → ( 𝑟 ‘ 𝑥 ) = ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑡 ∖ I ) ) ‘ 𝑥 ) ) |
7 |
6
|
eqeq2d |
⊢ ( 𝑟 = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑡 ∖ I ) ) → ( ( 𝑡 ‘ 𝑥 ) = ( 𝑟 ‘ 𝑥 ) ↔ ( 𝑡 ‘ 𝑥 ) = ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑡 ∖ I ) ) ‘ 𝑥 ) ) ) |
8 |
7
|
ralbidv |
⊢ ( 𝑟 = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑡 ∖ I ) ) → ( ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑡 ‘ 𝑥 ) = ( 𝑟 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑡 ‘ 𝑥 ) = ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑡 ∖ I ) ) ‘ 𝑥 ) ) ) |
9 |
8
|
rspcev |
⊢ ( ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑡 ∖ I ) ) ∈ 𝑅 ∧ ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑡 ‘ 𝑥 ) = ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑡 ∖ I ) ) ‘ 𝑥 ) ) → ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑡 ‘ 𝑥 ) = ( 𝑟 ‘ 𝑥 ) ) |
10 |
4 5 9
|
syl2anc |
⊢ ( 𝑡 ∈ 𝑇 → ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑡 ‘ 𝑥 ) = ( 𝑟 ‘ 𝑥 ) ) |
11 |
10
|
rgen |
⊢ ∀ 𝑡 ∈ 𝑇 ∃ 𝑟 ∈ 𝑅 ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑡 ‘ 𝑥 ) = ( 𝑟 ‘ 𝑥 ) |