| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrdifel.t | ⊢ 𝑇  =  ran  ( pmTrsp ‘ ( 𝑁  ∖  { 𝐾 } ) ) | 
						
							| 2 |  | pmtrdifel.r | ⊢ 𝑅  =  ran  ( pmTrsp ‘ 𝑁 ) | 
						
							| 3 |  | pmtrdifel.0 | ⊢ 𝑆  =  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( 𝑄  ∖   I  ) ) | 
						
							| 4 |  | eqid | ⊢ ( pmTrsp ‘ ( 𝑁  ∖  { 𝐾 } ) )  =  ( pmTrsp ‘ ( 𝑁  ∖  { 𝐾 } ) ) | 
						
							| 5 | 4 1 | pmtrfb | ⊢ ( 𝑄  ∈  𝑇  ↔  ( ( 𝑁  ∖  { 𝐾 } )  ∈  V  ∧  𝑄 : ( 𝑁  ∖  { 𝐾 } ) –1-1-onto→ ( 𝑁  ∖  { 𝐾 } )  ∧  dom  ( 𝑄  ∖   I  )  ≈  2o ) ) | 
						
							| 6 |  | difsnexi | ⊢ ( ( 𝑁  ∖  { 𝐾 } )  ∈  V  →  𝑁  ∈  V ) | 
						
							| 7 |  | f1of | ⊢ ( 𝑄 : ( 𝑁  ∖  { 𝐾 } ) –1-1-onto→ ( 𝑁  ∖  { 𝐾 } )  →  𝑄 : ( 𝑁  ∖  { 𝐾 } ) ⟶ ( 𝑁  ∖  { 𝐾 } ) ) | 
						
							| 8 |  | fdm | ⊢ ( 𝑄 : ( 𝑁  ∖  { 𝐾 } ) ⟶ ( 𝑁  ∖  { 𝐾 } )  →  dom  𝑄  =  ( 𝑁  ∖  { 𝐾 } ) ) | 
						
							| 9 |  | difssd | ⊢ ( dom  𝑄  =  ( 𝑁  ∖  { 𝐾 } )  →  ( 𝑄  ∖   I  )  ⊆  𝑄 ) | 
						
							| 10 |  | dmss | ⊢ ( ( 𝑄  ∖   I  )  ⊆  𝑄  →  dom  ( 𝑄  ∖   I  )  ⊆  dom  𝑄 ) | 
						
							| 11 | 9 10 | syl | ⊢ ( dom  𝑄  =  ( 𝑁  ∖  { 𝐾 } )  →  dom  ( 𝑄  ∖   I  )  ⊆  dom  𝑄 ) | 
						
							| 12 |  | difssd | ⊢ ( dom  𝑄  =  ( 𝑁  ∖  { 𝐾 } )  →  ( 𝑁  ∖  { 𝐾 } )  ⊆  𝑁 ) | 
						
							| 13 |  | sseq1 | ⊢ ( dom  𝑄  =  ( 𝑁  ∖  { 𝐾 } )  →  ( dom  𝑄  ⊆  𝑁  ↔  ( 𝑁  ∖  { 𝐾 } )  ⊆  𝑁 ) ) | 
						
							| 14 | 12 13 | mpbird | ⊢ ( dom  𝑄  =  ( 𝑁  ∖  { 𝐾 } )  →  dom  𝑄  ⊆  𝑁 ) | 
						
							| 15 | 11 14 | sstrd | ⊢ ( dom  𝑄  =  ( 𝑁  ∖  { 𝐾 } )  →  dom  ( 𝑄  ∖   I  )  ⊆  𝑁 ) | 
						
							| 16 | 7 8 15 | 3syl | ⊢ ( 𝑄 : ( 𝑁  ∖  { 𝐾 } ) –1-1-onto→ ( 𝑁  ∖  { 𝐾 } )  →  dom  ( 𝑄  ∖   I  )  ⊆  𝑁 ) | 
						
							| 17 |  | id | ⊢ ( dom  ( 𝑄  ∖   I  )  ≈  2o  →  dom  ( 𝑄  ∖   I  )  ≈  2o ) | 
						
							| 18 |  | eqid | ⊢ ( pmTrsp ‘ 𝑁 )  =  ( pmTrsp ‘ 𝑁 ) | 
						
							| 19 | 18 2 | pmtrrn | ⊢ ( ( 𝑁  ∈  V  ∧  dom  ( 𝑄  ∖   I  )  ⊆  𝑁  ∧  dom  ( 𝑄  ∖   I  )  ≈  2o )  →  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( 𝑄  ∖   I  ) )  ∈  𝑅 ) | 
						
							| 20 | 3 19 | eqeltrid | ⊢ ( ( 𝑁  ∈  V  ∧  dom  ( 𝑄  ∖   I  )  ⊆  𝑁  ∧  dom  ( 𝑄  ∖   I  )  ≈  2o )  →  𝑆  ∈  𝑅 ) | 
						
							| 21 | 6 16 17 20 | syl3an | ⊢ ( ( ( 𝑁  ∖  { 𝐾 } )  ∈  V  ∧  𝑄 : ( 𝑁  ∖  { 𝐾 } ) –1-1-onto→ ( 𝑁  ∖  { 𝐾 } )  ∧  dom  ( 𝑄  ∖   I  )  ≈  2o )  →  𝑆  ∈  𝑅 ) | 
						
							| 22 | 5 21 | sylbi | ⊢ ( 𝑄  ∈  𝑇  →  𝑆  ∈  𝑅 ) |