Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrdifel.t |
⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) |
2 |
|
pmtrdifel.r |
⊢ 𝑅 = ran ( pmTrsp ‘ 𝑁 ) |
3 |
|
pmtrdifel.0 |
⊢ 𝑆 = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑄 ∖ I ) ) |
4 |
1 2 3
|
pmtrdifellem2 |
⊢ ( 𝑄 ∈ 𝑇 → dom ( 𝑆 ∖ I ) = dom ( 𝑄 ∖ I ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝑄 ∈ 𝑇 ∧ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → dom ( 𝑆 ∖ I ) = dom ( 𝑄 ∖ I ) ) |
6 |
5
|
eleq2d |
⊢ ( ( 𝑄 ∈ 𝑇 ∧ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( 𝑥 ∈ dom ( 𝑆 ∖ I ) ↔ 𝑥 ∈ dom ( 𝑄 ∖ I ) ) ) |
7 |
4
|
difeq1d |
⊢ ( 𝑄 ∈ 𝑇 → ( dom ( 𝑆 ∖ I ) ∖ { 𝑥 } ) = ( dom ( 𝑄 ∖ I ) ∖ { 𝑥 } ) ) |
8 |
7
|
unieqd |
⊢ ( 𝑄 ∈ 𝑇 → ∪ ( dom ( 𝑆 ∖ I ) ∖ { 𝑥 } ) = ∪ ( dom ( 𝑄 ∖ I ) ∖ { 𝑥 } ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝑄 ∈ 𝑇 ∧ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ∪ ( dom ( 𝑆 ∖ I ) ∖ { 𝑥 } ) = ∪ ( dom ( 𝑄 ∖ I ) ∖ { 𝑥 } ) ) |
10 |
6 9
|
ifbieq1d |
⊢ ( ( 𝑄 ∈ 𝑇 ∧ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → if ( 𝑥 ∈ dom ( 𝑆 ∖ I ) , ∪ ( dom ( 𝑆 ∖ I ) ∖ { 𝑥 } ) , 𝑥 ) = if ( 𝑥 ∈ dom ( 𝑄 ∖ I ) , ∪ ( dom ( 𝑄 ∖ I ) ∖ { 𝑥 } ) , 𝑥 ) ) |
11 |
1 2 3
|
pmtrdifellem1 |
⊢ ( 𝑄 ∈ 𝑇 → 𝑆 ∈ 𝑅 ) |
12 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) → 𝑥 ∈ 𝑁 ) |
13 |
|
eqid |
⊢ ( pmTrsp ‘ 𝑁 ) = ( pmTrsp ‘ 𝑁 ) |
14 |
|
eqid |
⊢ dom ( 𝑆 ∖ I ) = dom ( 𝑆 ∖ I ) |
15 |
13 2 14
|
pmtrffv |
⊢ ( ( 𝑆 ∈ 𝑅 ∧ 𝑥 ∈ 𝑁 ) → ( 𝑆 ‘ 𝑥 ) = if ( 𝑥 ∈ dom ( 𝑆 ∖ I ) , ∪ ( dom ( 𝑆 ∖ I ) ∖ { 𝑥 } ) , 𝑥 ) ) |
16 |
11 12 15
|
syl2an |
⊢ ( ( 𝑄 ∈ 𝑇 ∧ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( 𝑆 ‘ 𝑥 ) = if ( 𝑥 ∈ dom ( 𝑆 ∖ I ) , ∪ ( dom ( 𝑆 ∖ I ) ∖ { 𝑥 } ) , 𝑥 ) ) |
17 |
|
eqid |
⊢ ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) = ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) |
18 |
|
eqid |
⊢ dom ( 𝑄 ∖ I ) = dom ( 𝑄 ∖ I ) |
19 |
17 1 18
|
pmtrffv |
⊢ ( ( 𝑄 ∈ 𝑇 ∧ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( 𝑄 ‘ 𝑥 ) = if ( 𝑥 ∈ dom ( 𝑄 ∖ I ) , ∪ ( dom ( 𝑄 ∖ I ) ∖ { 𝑥 } ) , 𝑥 ) ) |
20 |
10 16 19
|
3eqtr4rd |
⊢ ( ( 𝑄 ∈ 𝑇 ∧ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( 𝑄 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
21 |
20
|
ralrimiva |
⊢ ( 𝑄 ∈ 𝑇 → ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑄 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |