Metamath Proof Explorer


Theorem pmtrdifellem3

Description: Lemma 3 for pmtrdifel . (Contributed by AV, 15-Jan-2019)

Ref Expression
Hypotheses pmtrdifel.t 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) )
pmtrdifel.r 𝑅 = ran ( pmTrsp ‘ 𝑁 )
pmtrdifel.0 𝑆 = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑄 ∖ I ) )
Assertion pmtrdifellem3 ( 𝑄𝑇 → ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑄𝑥 ) = ( 𝑆𝑥 ) )

Proof

Step Hyp Ref Expression
1 pmtrdifel.t 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) )
2 pmtrdifel.r 𝑅 = ran ( pmTrsp ‘ 𝑁 )
3 pmtrdifel.0 𝑆 = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑄 ∖ I ) )
4 1 2 3 pmtrdifellem2 ( 𝑄𝑇 → dom ( 𝑆 ∖ I ) = dom ( 𝑄 ∖ I ) )
5 4 adantr ( ( 𝑄𝑇𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → dom ( 𝑆 ∖ I ) = dom ( 𝑄 ∖ I ) )
6 5 eleq2d ( ( 𝑄𝑇𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( 𝑥 ∈ dom ( 𝑆 ∖ I ) ↔ 𝑥 ∈ dom ( 𝑄 ∖ I ) ) )
7 4 difeq1d ( 𝑄𝑇 → ( dom ( 𝑆 ∖ I ) ∖ { 𝑥 } ) = ( dom ( 𝑄 ∖ I ) ∖ { 𝑥 } ) )
8 7 unieqd ( 𝑄𝑇 ( dom ( 𝑆 ∖ I ) ∖ { 𝑥 } ) = ( dom ( 𝑄 ∖ I ) ∖ { 𝑥 } ) )
9 8 adantr ( ( 𝑄𝑇𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( dom ( 𝑆 ∖ I ) ∖ { 𝑥 } ) = ( dom ( 𝑄 ∖ I ) ∖ { 𝑥 } ) )
10 6 9 ifbieq1d ( ( 𝑄𝑇𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → if ( 𝑥 ∈ dom ( 𝑆 ∖ I ) , ( dom ( 𝑆 ∖ I ) ∖ { 𝑥 } ) , 𝑥 ) = if ( 𝑥 ∈ dom ( 𝑄 ∖ I ) , ( dom ( 𝑄 ∖ I ) ∖ { 𝑥 } ) , 𝑥 ) )
11 1 2 3 pmtrdifellem1 ( 𝑄𝑇𝑆𝑅 )
12 eldifi ( 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) → 𝑥𝑁 )
13 eqid ( pmTrsp ‘ 𝑁 ) = ( pmTrsp ‘ 𝑁 )
14 eqid dom ( 𝑆 ∖ I ) = dom ( 𝑆 ∖ I )
15 13 2 14 pmtrffv ( ( 𝑆𝑅𝑥𝑁 ) → ( 𝑆𝑥 ) = if ( 𝑥 ∈ dom ( 𝑆 ∖ I ) , ( dom ( 𝑆 ∖ I ) ∖ { 𝑥 } ) , 𝑥 ) )
16 11 12 15 syl2an ( ( 𝑄𝑇𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( 𝑆𝑥 ) = if ( 𝑥 ∈ dom ( 𝑆 ∖ I ) , ( dom ( 𝑆 ∖ I ) ∖ { 𝑥 } ) , 𝑥 ) )
17 eqid ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) = ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) )
18 eqid dom ( 𝑄 ∖ I ) = dom ( 𝑄 ∖ I )
19 17 1 18 pmtrffv ( ( 𝑄𝑇𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( 𝑄𝑥 ) = if ( 𝑥 ∈ dom ( 𝑄 ∖ I ) , ( dom ( 𝑄 ∖ I ) ∖ { 𝑥 } ) , 𝑥 ) )
20 10 16 19 3eqtr4rd ( ( 𝑄𝑇𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( 𝑄𝑥 ) = ( 𝑆𝑥 ) )
21 20 ralrimiva ( 𝑄𝑇 → ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑄𝑥 ) = ( 𝑆𝑥 ) )