Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrdifel.t |
⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) |
2 |
|
pmtrdifel.r |
⊢ 𝑅 = ran ( pmTrsp ‘ 𝑁 ) |
3 |
|
pmtrdifel.0 |
⊢ 𝑆 = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑄 ∖ I ) ) |
4 |
1 2 3
|
pmtrdifellem1 |
⊢ ( 𝑄 ∈ 𝑇 → 𝑆 ∈ 𝑅 ) |
5 |
|
eqid |
⊢ ( pmTrsp ‘ 𝑁 ) = ( pmTrsp ‘ 𝑁 ) |
6 |
|
eqid |
⊢ dom ( 𝑆 ∖ I ) = dom ( 𝑆 ∖ I ) |
7 |
5 2 6
|
pmtrffv |
⊢ ( ( 𝑆 ∈ 𝑅 ∧ 𝐾 ∈ 𝑁 ) → ( 𝑆 ‘ 𝐾 ) = if ( 𝐾 ∈ dom ( 𝑆 ∖ I ) , ∪ ( dom ( 𝑆 ∖ I ) ∖ { 𝐾 } ) , 𝐾 ) ) |
8 |
4 7
|
sylan |
⊢ ( ( 𝑄 ∈ 𝑇 ∧ 𝐾 ∈ 𝑁 ) → ( 𝑆 ‘ 𝐾 ) = if ( 𝐾 ∈ dom ( 𝑆 ∖ I ) , ∪ ( dom ( 𝑆 ∖ I ) ∖ { 𝐾 } ) , 𝐾 ) ) |
9 |
|
eqid |
⊢ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) = ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) |
10 |
|
eqid |
⊢ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) |
11 |
1 9 10
|
symgtrf |
⊢ 𝑇 ⊆ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) |
12 |
11
|
sseli |
⊢ ( 𝑄 ∈ 𝑇 → 𝑄 ∈ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ) |
13 |
9 10
|
symgbasf |
⊢ ( 𝑄 ∈ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) → 𝑄 : ( 𝑁 ∖ { 𝐾 } ) ⟶ ( 𝑁 ∖ { 𝐾 } ) ) |
14 |
|
ffn |
⊢ ( 𝑄 : ( 𝑁 ∖ { 𝐾 } ) ⟶ ( 𝑁 ∖ { 𝐾 } ) → 𝑄 Fn ( 𝑁 ∖ { 𝐾 } ) ) |
15 |
|
fndifnfp |
⊢ ( 𝑄 Fn ( 𝑁 ∖ { 𝐾 } ) → dom ( 𝑄 ∖ I ) = { 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ∣ ( 𝑄 ‘ 𝑥 ) ≠ 𝑥 } ) |
16 |
|
ssrab2 |
⊢ { 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ∣ ( 𝑄 ‘ 𝑥 ) ≠ 𝑥 } ⊆ ( 𝑁 ∖ { 𝐾 } ) |
17 |
|
ssel2 |
⊢ ( ( { 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ∣ ( 𝑄 ‘ 𝑥 ) ≠ 𝑥 } ⊆ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝐾 ∈ { 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ∣ ( 𝑄 ‘ 𝑥 ) ≠ 𝑥 } ) → 𝐾 ∈ ( 𝑁 ∖ { 𝐾 } ) ) |
18 |
|
eldif |
⊢ ( 𝐾 ∈ ( 𝑁 ∖ { 𝐾 } ) ↔ ( 𝐾 ∈ 𝑁 ∧ ¬ 𝐾 ∈ { 𝐾 } ) ) |
19 |
|
elsng |
⊢ ( 𝐾 ∈ 𝑁 → ( 𝐾 ∈ { 𝐾 } ↔ 𝐾 = 𝐾 ) ) |
20 |
19
|
notbid |
⊢ ( 𝐾 ∈ 𝑁 → ( ¬ 𝐾 ∈ { 𝐾 } ↔ ¬ 𝐾 = 𝐾 ) ) |
21 |
|
eqid |
⊢ 𝐾 = 𝐾 |
22 |
21
|
pm2.24i |
⊢ ( ¬ 𝐾 = 𝐾 → ¬ 𝐾 ∈ 𝑁 ) |
23 |
20 22
|
syl6bi |
⊢ ( 𝐾 ∈ 𝑁 → ( ¬ 𝐾 ∈ { 𝐾 } → ¬ 𝐾 ∈ 𝑁 ) ) |
24 |
23
|
imp |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ ¬ 𝐾 ∈ { 𝐾 } ) → ¬ 𝐾 ∈ 𝑁 ) |
25 |
18 24
|
sylbi |
⊢ ( 𝐾 ∈ ( 𝑁 ∖ { 𝐾 } ) → ¬ 𝐾 ∈ 𝑁 ) |
26 |
17 25
|
syl |
⊢ ( ( { 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ∣ ( 𝑄 ‘ 𝑥 ) ≠ 𝑥 } ⊆ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝐾 ∈ { 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ∣ ( 𝑄 ‘ 𝑥 ) ≠ 𝑥 } ) → ¬ 𝐾 ∈ 𝑁 ) |
27 |
16 26
|
mpan |
⊢ ( 𝐾 ∈ { 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ∣ ( 𝑄 ‘ 𝑥 ) ≠ 𝑥 } → ¬ 𝐾 ∈ 𝑁 ) |
28 |
27
|
con2i |
⊢ ( 𝐾 ∈ 𝑁 → ¬ 𝐾 ∈ { 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ∣ ( 𝑄 ‘ 𝑥 ) ≠ 𝑥 } ) |
29 |
|
eleq2 |
⊢ ( dom ( 𝑄 ∖ I ) = { 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ∣ ( 𝑄 ‘ 𝑥 ) ≠ 𝑥 } → ( 𝐾 ∈ dom ( 𝑄 ∖ I ) ↔ 𝐾 ∈ { 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ∣ ( 𝑄 ‘ 𝑥 ) ≠ 𝑥 } ) ) |
30 |
29
|
notbid |
⊢ ( dom ( 𝑄 ∖ I ) = { 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ∣ ( 𝑄 ‘ 𝑥 ) ≠ 𝑥 } → ( ¬ 𝐾 ∈ dom ( 𝑄 ∖ I ) ↔ ¬ 𝐾 ∈ { 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ∣ ( 𝑄 ‘ 𝑥 ) ≠ 𝑥 } ) ) |
31 |
28 30
|
syl5ibr |
⊢ ( dom ( 𝑄 ∖ I ) = { 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ∣ ( 𝑄 ‘ 𝑥 ) ≠ 𝑥 } → ( 𝐾 ∈ 𝑁 → ¬ 𝐾 ∈ dom ( 𝑄 ∖ I ) ) ) |
32 |
14 15 31
|
3syl |
⊢ ( 𝑄 : ( 𝑁 ∖ { 𝐾 } ) ⟶ ( 𝑁 ∖ { 𝐾 } ) → ( 𝐾 ∈ 𝑁 → ¬ 𝐾 ∈ dom ( 𝑄 ∖ I ) ) ) |
33 |
12 13 32
|
3syl |
⊢ ( 𝑄 ∈ 𝑇 → ( 𝐾 ∈ 𝑁 → ¬ 𝐾 ∈ dom ( 𝑄 ∖ I ) ) ) |
34 |
33
|
imp |
⊢ ( ( 𝑄 ∈ 𝑇 ∧ 𝐾 ∈ 𝑁 ) → ¬ 𝐾 ∈ dom ( 𝑄 ∖ I ) ) |
35 |
1 2 3
|
pmtrdifellem2 |
⊢ ( 𝑄 ∈ 𝑇 → dom ( 𝑆 ∖ I ) = dom ( 𝑄 ∖ I ) ) |
36 |
35
|
eleq2d |
⊢ ( 𝑄 ∈ 𝑇 → ( 𝐾 ∈ dom ( 𝑆 ∖ I ) ↔ 𝐾 ∈ dom ( 𝑄 ∖ I ) ) ) |
37 |
36
|
adantr |
⊢ ( ( 𝑄 ∈ 𝑇 ∧ 𝐾 ∈ 𝑁 ) → ( 𝐾 ∈ dom ( 𝑆 ∖ I ) ↔ 𝐾 ∈ dom ( 𝑄 ∖ I ) ) ) |
38 |
34 37
|
mtbird |
⊢ ( ( 𝑄 ∈ 𝑇 ∧ 𝐾 ∈ 𝑁 ) → ¬ 𝐾 ∈ dom ( 𝑆 ∖ I ) ) |
39 |
38
|
iffalsed |
⊢ ( ( 𝑄 ∈ 𝑇 ∧ 𝐾 ∈ 𝑁 ) → if ( 𝐾 ∈ dom ( 𝑆 ∖ I ) , ∪ ( dom ( 𝑆 ∖ I ) ∖ { 𝐾 } ) , 𝐾 ) = 𝐾 ) |
40 |
8 39
|
eqtrd |
⊢ ( ( 𝑄 ∈ 𝑇 ∧ 𝐾 ∈ 𝑁 ) → ( 𝑆 ‘ 𝐾 ) = 𝐾 ) |