Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrdifel.t |
⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) |
2 |
|
pmtrdifel.r |
⊢ 𝑅 = ran ( pmTrsp ‘ 𝑁 ) |
3 |
|
fveq2 |
⊢ ( 𝑗 = 𝑛 → ( 𝑤 ‘ 𝑗 ) = ( 𝑤 ‘ 𝑛 ) ) |
4 |
3
|
difeq1d |
⊢ ( 𝑗 = 𝑛 → ( ( 𝑤 ‘ 𝑗 ) ∖ I ) = ( ( 𝑤 ‘ 𝑛 ) ∖ I ) ) |
5 |
4
|
dmeqd |
⊢ ( 𝑗 = 𝑛 → dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) = dom ( ( 𝑤 ‘ 𝑛 ) ∖ I ) ) |
6 |
5
|
fveq2d |
⊢ ( 𝑗 = 𝑛 → ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑛 ) ∖ I ) ) ) |
7 |
6
|
cbvmptv |
⊢ ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) = ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑛 ) ∖ I ) ) ) |
8 |
1 2 7
|
pmtrdifwrdellem1 |
⊢ ( 𝑤 ∈ Word 𝑇 → ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ∈ Word 𝑅 ) |
9 |
8
|
adantl |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑤 ∈ Word 𝑇 ) → ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ∈ Word 𝑅 ) |
10 |
1 2 7
|
pmtrdifwrdellem2 |
⊢ ( 𝑤 ∈ Word 𝑇 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑤 ∈ Word 𝑇 ) → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ) ) |
12 |
1 2 7
|
pmtrdifwrdel2lem1 |
⊢ ( ( 𝑤 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) |
13 |
12
|
ancoms |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑤 ∈ Word 𝑇 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) |
14 |
1 2 7
|
pmtrdifwrdellem3 |
⊢ ( 𝑤 ∈ Word 𝑇 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑤 ∈ Word 𝑇 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) |
16 |
|
r19.26 |
⊢ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) |
17 |
13 15 16
|
sylanbrc |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑤 ∈ Word 𝑇 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) |
18 |
|
fveq2 |
⊢ ( 𝑢 = ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) → ( ♯ ‘ 𝑢 ) = ( ♯ ‘ ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ) ) |
19 |
18
|
eqeq2d |
⊢ ( 𝑢 = ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) → ( ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑢 ) ↔ ( ♯ ‘ 𝑤 ) = ( ♯ ‘ ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ) ) ) |
20 |
|
fveq1 |
⊢ ( 𝑢 = ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) → ( 𝑢 ‘ 𝑖 ) = ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ) |
21 |
20
|
fveq1d |
⊢ ( 𝑢 = ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) → ( ( 𝑢 ‘ 𝑖 ) ‘ 𝐾 ) = ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝐾 ) ) |
22 |
21
|
eqeq1d |
⊢ ( 𝑢 = ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) → ( ( ( 𝑢 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ↔ ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) ) |
23 |
20
|
fveq1d |
⊢ ( 𝑢 = ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) → ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) |
24 |
23
|
eqeq2d |
⊢ ( 𝑢 = ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) → ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑥 ) ↔ ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) |
25 |
24
|
ralbidv |
⊢ ( 𝑢 = ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) → ( ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) |
26 |
22 25
|
anbi12d |
⊢ ( 𝑢 = ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) → ( ( ( ( 𝑢 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑥 ) ) ↔ ( ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) ) |
27 |
26
|
ralbidv |
⊢ ( 𝑢 = ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑢 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑥 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) ) |
28 |
19 27
|
anbi12d |
⊢ ( 𝑢 = ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) → ( ( ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑢 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑢 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑥 ) ) ) ↔ ( ( ♯ ‘ 𝑤 ) = ( ♯ ‘ ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) ) ) |
29 |
28
|
rspcev |
⊢ ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑤 ) = ( ♯ ‘ ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) ) → ∃ 𝑢 ∈ Word 𝑅 ( ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑢 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑢 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑥 ) ) ) ) |
30 |
9 11 17 29
|
syl12anc |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑤 ∈ Word 𝑇 ) → ∃ 𝑢 ∈ Word 𝑅 ( ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑢 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑢 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑥 ) ) ) ) |
31 |
30
|
ralrimiva |
⊢ ( 𝐾 ∈ 𝑁 → ∀ 𝑤 ∈ Word 𝑇 ∃ 𝑢 ∈ Word 𝑅 ( ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑢 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑢 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑥 ) ) ) ) |